Quasi-Bi-Hamiltonian structures of the 2-dimensional Kepler problem
@article{Cariena2016QuasiBiHamiltonianSO, title={Quasi-Bi-Hamiltonian structures of the 2-dimensional Kepler problem}, author={Jos{\'e} F. Cari{\~n}ena and Manuel F Ra{\~n}ada}, journal={Symmetry Integrability and Geometry-methods and Applications}, year={2016}, volume={12}, pages={010} }
The existence of quasi-bi-Hamiltonian structures for the Kepler problem is studied. We first relate the superintegrability of the system with the existence of two complex functions endowed with very interesting Poisson bracket properties and then we prove the existence of a quasi-bi-Hamiltonian structure by making use of these two functions. The paper can be considered as divided in two parts. In the first part a quasi-bi-Hamiltonian structure is obtained by making use of polar coordinates and…
6 Citations
Bi-Hamiltonian structure of the bi-dimensional superintegrable nonlinear isotonic oscillator
- Mathematics
- 2016
The higher-order superintegrability of the two-dimensional isotonic oscillator (noncentral oscillator with inversely quadratic nonlinearities also known as caged anisotropic oscillator) with rational…
Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Space
- PhysicsTrends in Mathematics
- 2019
This work addresses the Hamiltonian dynamics of the Kepler problem in a deformed phase space, by considering the equatorial orbit. The recursion operators are constructed and used to compute the…
Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion
- PhysicsJournal of Geometric Mechanics
- 2021
The existence of quasi-bi-Hamiltonian structures for a two-dimen-sional superintegrable \begin{document}$ (k_1,k_2,k_3) $\end{document} -dependent Kepler-related problem is studied. We make use of an…
Complex functions and geometric structures associated to the superintegrable Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion
- Mathematics
- 2020
The existence of quasi-bi-Hamiltonian structures for a two-dimensional superintegrable $(k_1,k_2,k_3)$-dependent Kepler-related problem is studied. We make use of an approach that is related with the…
Quasi-bi-Hamiltonian structures, complex functions and superintegrability: the Tremblay–Turbiner–Winternitz (TTW) and the Post–Winternitz (PW) systems
- Mathematics
- 2017
The existence of quasi-bi-Hamiltonian structures for the Tremblay–Turbiner–Winternitz (TTW) and the Post–Winternitz (PW) systems is studied. We first recall that the superintegrability of these two…
References
SHOWING 1-10 OF 37 REFERENCES
Two degrees of freedom quasi-bi-Hamiltonian systems
- Mathematics
- 1996
Starting from the classical example of the Henon - Heiles integrable Hamiltonian system, we show that it admits a slightly different formulation from the classical bi-Hamiltonian system. We introduce…
Dynamical symmetries, bi-Hamiltonian structures, and superintegrable n=2 systems
- Mathematics, Physics
- 2000
The theory of dynamical but non-Cartan (or non-Noether) symmetries and the existence of bi-Hamiltonian structures is studied using the symplectic formalism approach. The results are applied to the…
On bi-Hamiltonian formulation of the perturbed Kepler problem
- Mathematics, Physics
- 2015
The perturbed Kepler problem is shown to be a bi-Hamiltonian system in spite of the fact that the graph of the Hamilton function is not a hypersurface of translation, which goes against a necessary…
A bi-Hamiltonian formulation for separable potentials and its application to the Kepler problem and the Euler problem of two centers of gravitation
- Physics, Mathematics
- 1991
Families of quasi-bi-Hamiltonian systems and separability
- Mathematics
- 1999
It is shown how to construct an infinite number of families of quasi-bi-Hamiltonian (QBH) systems by means of the constrained flows of soliton equations. Three explicit QBH structures are presented…
Completely integrable bi-Hamiltonian systems
- Mathematics
- 1994
We study the geometry of completely integrable bi-Hamiltonian systems and, in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that…
A new proof of the higher-order superintegrability of a noncentral oscillator with inversely quadratic nonlinearities
- Mathematics
- 2010
The superintegrability of a rational harmonic oscillator (non-central harmonic oscillator with rational ratio of frequencies) with non-linear "centrifugal" terms is studied. In the first part, the…
Quasi-bi-Hamiltonian systems and separability
- Physics
- 1997
Two quasi-bi-Hamiltonian systems with three and four degrees of freedom are presented. These systems are shown to be separable in terms of Nijenhuis coordinates. Moreover, the most general Pfaffian…