Quantum supergroups VI. Roots of $1$

@article{Chung2018QuantumSV,
  title={Quantum supergroups VI. Roots of \$1\$},
  author={C. Chung and Thomas M. Sale and W. Wang},
  journal={arXiv: Quantum Algebra},
  year={2018}
}
A quantum covering group is an algebra with parameters $q$ and $\pi$ subject to $\pi^2=1$ and it admits an integral form; it specializes to the usual quantum group at $\pi=1$ and to a quantum supergroup of anisotropic type at $\pi=-1$. In this paper we establish the Frobenius-Lusztig homomorphism and Lusztig-Steinberg tensor product theorem in the setting of quantum covering groups at roots of 1. The specialization of these constructions at $\pi=1$ recovers Lusztig's constructions for quantum… Expand
1 Citations

References

SHOWING 1-10 OF 26 REFERENCES
QUANTUM SUPERGROUPS I. FOUNDATIONS
  • 16
  • PDF
Quantum Supergroups III. Twistors
  • 25
  • PDF
A geometric setting for quantum osp(1|2)
  • 5
  • PDF
Categorification of quantum Kac-Moody superalgebras
  • 41
  • PDF
Introduction to Quantum Groups
  • 1,245
Quiver Hecke superalgebras
  • 48
  • PDF
Quantum supergroups IV: the modified form
  • 8
  • PDF
...
1
2
3
...