Quantum geodesic flows and curvature
@inproceedings{Beggs2022QuantumGF, title={Quantum geodesic flows and curvature}, author={Edwin J. Beggs and Shahn Majid}, year={2022} }
We study geodesics flows on curved quantum Riemannian geometries using a recent formulation in terms of bimodule connections and completely positive maps. We complete this formalism with a canonical ∗ operation on noncommutative vector fields. We show on a classical manifold how the Ricci tensor arises naturally in our approach as a term in the convective derivative of the divergence of the geodesic velocity field, and use this to propose a similar object in the noncommutative case. Examples…
References
SHOWING 1-10 OF 27 REFERENCES
Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere
- Mathematics
- 2003
We study the quantum sphere as a quantum Riemannian manifold in the quantum frame bundle approach. We exhibit its 2-dimensional cotangent bundle as a direct sum Ω0,1⊕Ω1,0 in a double complex. We find…
Gravity induced from quantum spacetime
- Mathematics, Physics
- 2014
We show that tensoriality constraints in noncommutative Riemannian geometry in the two-dimensional bicrossproduct model quantum spacetime algebra [x, t] = λx drastically reduce the moduli of possible…
QUANTUM GEODESICS ON λ-MINKOWSKI SPACETIME
- Physics
- 2022
We apply a recent formalism of quantum geodesics to the well-known bicrossproduct model λ-Minkowski quantum spacetime [xi, t] = iλpx with its flat quantum metric as a model of quantum gravity…
Geometric Dirac operator on the fuzzy sphere
- MathematicsLetters in Mathematical Physics
- 2022
We construct a Connes spectral triple or ‘Dirac operator’ on the non-reduced fuzzy sphere $$\mathbb {C}_\lambda [S^2]$$ C λ [ S 2 ] as realised using quantum Riemannian geometry with a central…
Noncommutative geodesics and the KSGNS construction
- MathematicsJournal of Geometry and Physics
- 2020
Spectral triples from bimodule connections and Chern connections
- Mathematics
- 2015
We give a geometrical construction of Connes spectral triples or noncommutative Dirac operators $D$ starting with a bimodule connection on the proposed spinor bundle. The theory is applied to the…
Differential calculus on compact matrix pseudogroups (quantum groups)
- Mathematics
- 1989
The paper deals with non-commutative differential geometry. The general theory of differential calculus on quantum groups is developed. Bicovariant bimodules as objects analogous to tensor bundles…
The quantum structure of spacetime at the Planck scale and quantum fields
- Physics
- 1995
We propose uncertainty relations for the different coordinates of spacetime events, motivated by Heisenberg's principle and by Einstein's theory of classical gravity. A model of Quantum Spacetime is…