# Quantum algebras as quantizations of dual Poisson–Lie groups

@article{Ballesteros2013QuantumAA, title={Quantum algebras as quantizations of dual Poisson–Lie groups}, author={{\'A}ngel Ballesteros and Fabio Musso}, journal={Journal of Physics A: Mathematical and Theoretical}, year={2013}, volume={46} }

A systematic computational approach for the explicit construction of any quantum Hopf algebra (Uz(g), Δz) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δz is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λg) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by…

## 11 Citations

Poisson–Hopf algebra deformations of Lie–Hamilton systems

- Mathematics
- 2017

Hopf algebra deformations are merged with a class of Lie systems of Hamiltonian type, the so-called Lie–Hamilton systems, to devise a novel formalism: the Poisson–Hopf algebra deformations of…

Deformation of Noncommutative Quantum Mechanics

- Mathematics
- 2016

In this paper, the Lie group $G_{NC}^{\alpha,\beta,\gamma}$, of which the kinematical symmetry group $G_{NC}$ of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero…

Coreductive Lie bialgebras and dual homogeneous spaces

- Mathematics
- 2019

Quantum homogeneous spaces are noncommutative spaces with quantum group covariance. Their semiclassical counterparts are Poisson homogeneous spaces, which are quotient manifolds of Lie groups $M=G/H$…

Curved momentum spaces from quantum (anti–)de Sitter groups in (
3+1
) dimensions

- Mathematics, PhysicsPhysical Review D
- 2018

Curved momentum spaces associated to the $\kappa$-deformation of the (3+1) de Sitter and Anti-de Sitter algebras are constructed as orbits of suitable actions of the dual Poisson-Lie group associated…

Interplay between Spacetime Curvature, Speed of Light and Quantum Deformations of Relativistic Symmetries

- PhysicsSymmetry
- 2021

The properties and relations of these algebras of relativistic symmetries and their associated noncommutative spacetimes are surveyed, emphasizing the nontrivial effects of interplay between curvature, quantum deformation and speed of light parameters.

Coisotropic Lie bialgebras and complementary dual Poisson homogeneous spaces

- MathematicsJournal of Physics A: Mathematical and Theoretical
- 2021

Quantum homogeneous spaces are noncommutative spaces with quantum group covariance. Their semiclassical counterparts are Poisson homogeneous spaces, which are quotient manifolds of Lie groups M = G/H…

## References

SHOWING 1-10 OF 47 REFERENCES

An introduction to quantized Lie groups and algebras

- Mathematics
- 1992

We give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation…

Three-dimensional quantum algebras: a Cartan-like point of view

- Mathematics
- 2004

A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of…

Classical deformations, Poisson-Lie contractions, and quantization of dual Lie bialgebras

- Mathematics
- 1995

A Poisson–Hopf algebra of smooth functions is simultaneously constructed on the two dimensional Euclidean, Poincare, and Heisenberg groups by using a classical r‐matrix which is invariant under…

A guide to quantum groups

- Mathematics
- 1994

Introduction 1. Poisson-Lie groups and Lie bialgebras 2. Coboundary Poisson-Lie groups and the classical Yang-Baxter equation 3. Solutions of the classical Yang-Baxter equation 4. Quasitriangular…

THE QUANTUM DUALITY PRINCIPLE

- Mathematics
- 1999

The "quantum duality principle" states that the quantisation of a Lie bialgebra | via a quantum universal enveloping algebra (in short, QUEA) | also provides a quantisa- tion of the dual Lie…

Twisted classical Poincare algebras

- Mathematics
- 1994

We consider the twisting of the Hopf structure for the classical enveloping algebra U(g), where g is an inhomogenous rotation algebra, with explicit formulae given for the D=4 Poincare algebra…

Affine Lie algebras and quantum groups

- Mathematics
- 1991

Let g be a finite dimensional simple Lie algebra of simply laced type. Drinfeld has shown that the tensor category of finite-dimensional representations of the corresponding quantized enveloping…

Quantum Groups

- Mathematics
- 1993

This thesis consists of four papers. In the first paper we present methods and explicit formulas for describing simple weight modules over twisted generalized Weyl algebras. Under certain conditions…

Quaternionic and Poisson-Lie structures in three-dimensional gravity: The cosmological constant as deformation parameter

- Mathematics
- 2008

Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper…

Non-standard quantum so(2,2) and beyond

- Mathematics
- 1994

A new 'non-standard' quantization of the universal enveloping algebra of the split (natural) real form so(2,2) of D2 is presented. Some (classical) graded contractions of so(2,2) associated to a…