Quantum Goethals-Preparata codes

@article{Grassl2008QuantumGC,
  title={Quantum Goethals-Preparata codes},
  author={M. Grassl and M. Roetteler},
  journal={2008 IEEE International Symposium on Information Theory},
  year={2008},
  pages={300-304}
}
  • M. Grassl, M. Roetteler
  • Published 2008
  • Computer Science, Physics, Mathematics
  • 2008 IEEE International Symposium on Information Theory
  • We present a family of non-additive quantum codes based on Goethals and Preparata codes with parameters ((2m, 22m-5m+1, 8)). The dimension of these codes is eight times higher than the dimension of the best known additive quantum codes of equal length and minimum distance. 

    Figures and Topics from this paper.

    Non-additive quantum codes from Goethals and Preparata codes
    • 13
    • PDF
    Codeword stabilized quantum codes: Algorithm and structure
    • 23
    • Highly Influenced
    • PDF
    Codes for simultaneous transmission of quantum and classical information
    • 14
    • PDF
    Codeword stabilized quantum codes for asymmetric channels
    • 5
    • PDF
    Generalized concatenation for quantum codes
    • 4
    • PDF
    Structured Error Recovery for Codeword-Stabilized Quantum Codes
    • 5
    • PDF

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 22 REFERENCES
    Good quantum error-correcting codes exist.
    • 1,459
    • PDF
    Quantum error correction via codes over GF(4)
    • 398
    • PDF
    The Z4-linearity of Kerdock, Preparata, Goethals, and related codes
    • 1,247
    • PDF
    Enlargement of Calderbank-Shor-Steane quantum codes
    • 201
    • Highly Influential
    • PDF
    A nonadditive quantum code
    • 82
    • PDF
    Codeword Stabilized Quantum Codes
    • 54
    • PDF
    Simple quantum error-correcting codes.
    • 316
    • PDF
    A Class of Optimum Nonlinear Double-Error-Correcting Codes
    • 135