Quantum Deformation of the Grassmannian Manifold

  title={Quantum Deformation of the Grassmannian Manifold},
  author={Rita Fioresi},
Ž . In this paper we work out a deformation of G r, n , the grassmannian of r-subspaces in a vector space of dimension n over a field k of characteristic 0. Ž . Ž . G r, n is deformed as an homogeneous space for SL k , the special linear group n n w Ž .x Ž . of k ; this means that k G r, n , the coordinate ring of G r, n , gets deformed w x Ž . together with with the coaction of k SL , the coordinate ring of SL k , on it. n n Our deformation comes together with a coaction of the corresponding… CONTINUE READING

From This Paper

Topics from this paper.
9 Citations
15 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 15 references

‘A Guide to Quantum Groups,’’ Cambridge Univ

  • V. Chari, A. Pressley
  • Press, Cambridge, UK,
  • 1994

On the quantum flag manifold, Funktsional. Anal. i Prilozhen

  • Ya. S. Soibelman
  • Russian ; translation, Functional Anal. Appl
  • 1992

Quantum flag and Schubert schemes, in Contemp

  • V. Lakshmibai, N. Reshetikhin
  • Math., Vol. 134, pp. 145]181, Amer. Math. Soc…
  • 1992

Soibelman , On the quantum flag manifold , Funktsional

  • S. Ya.
  • Math .
  • 1992

and Ya

  • L. L. Vaksma
  • S. Soibelman, On some problems in the theory of…
  • 1992

Quantum deformation of flag schemes and Grassmann schemes

  • J. Towber
  • J . Algebra
  • 1991

Quantum deformation of flag schemes and Grassmann schemes. I

  • E. Taft, J. Towber
  • J. Algebra
  • 1991

and Jian Pan Wang, Quantum linear groups, Mem

  • B. Parshal
  • Amer. Math. Soc. 89, No. 439,
  • 1991

Quantum Groups and Non Commutative Geometry,’

  • Yuri I. Manin
  • Centre de Recherches Mathematiques Montreal,
  • 1988

Similar Papers

Loading similar papers…