Quantization on Nilpotent Lie Groups

@inproceedings{Fischer2016QuantizationON,
  title={Quantization on Nilpotent Lie Groups},
  author={Veronique Fischer and Michael Ruzhansky},
  year={2016}
}
Preface.- Introduction.- Notation and conventions.- 1 Preliminaries on Lie groups.- 2 Quantization on compact Lie groups.- 3 Homogeneous Lie groups.- 4 Rockland operators and Sobolev spaces.- 5 Quantization on graded Lie groups.- 6 Pseudo-differential operators on the Heisenberg group.- A Miscellaneous.- B Group C* and von Neumann algebras.- Schrodinger representations and Weyl quantization.- Explicit symbolic calculus on the Heisenberg group.- List of quantizations.- Bibliography.- Index. 
151 Citations
Defect measures on graded lie groups
  • 7
  • Highly Influenced
  • PDF
Twisted Pseudo-differential Operators on Type I Locally Compact Groups
  • 4
  • PDF
Fourier multipliers for Triebel-Lizorkin spaces on compact Lie groups
  • PDF
Fourier multipliers on graded Lie groups
  • 15
  • PDF
Nuclear Pseudo-Differential Operators in Besov Spaces on Compact Lie Groups
  • 13
  • PDF
Fourier multipliers for Hardy spaces on graded Lie groups
  • 2
  • Highly Influenced
  • PDF
Semi-classical analysis on H-type groups
  • 8
  • PDF
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 204 REFERENCES
Pseudo-Differential Operators on Heisenberg Groups
  • 1
Analysis and Geometry on Groups
  • 822
Noncommutative Harmonic Analysis
  • 401
A Pseudo-differential Calculus on Graded Nilpotent Lie Groups
  • 22
  • PDF
A pseudo-differential calculus on the Heisenberg group
  • 20
  • PDF
Intrinsic pseudo-differential calculi on any compact Lie group
  • 19
  • PDF
Global functional calculus for operators on compact Lie groups
  • 26
  • PDF
Nilpotent lie groups: Structure and applications to analysis
  • 118
  • Highly Influential
Gelfand pairs on the Heisenberg group and Schwartz functions
  • 26
  • PDF
...
1
2
3
4
5
...