Quantization of the Laplacian operator on vector bundles, I

@article{Keller2015QuantizationOT,
  title={Quantization of the Laplacian operator on vector bundles, I},
  author={J. Keller and Julien Meyer and Reza Seyyedali},
  journal={Mathematische Annalen},
  year={2015},
  volume={366},
  pages={865-907}
}
Let (E, h) be a holomorphic, Hermitian vector bundle over a polarized manifold. We provide a canonical quantization of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of E. If E is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian. 

References

SHOWING 1-10 OF 24 REFERENCES
Scalar Curvature and Projective Embeddings, I
Balance point and Stability of Vector Bundles Over a Projective Manifold
Szego kernels and a theorem of Tian
Ricci iterations on Kähler classes
  • J. Keller
  • Mathematics
  • Journal of the Institute of Mathematics of Jussieu
  • 2009
Morse Inequalities and Bergman Kernels
...
1
2
3
...