Quadripartite version of the Hajnal-Szemerédi theorem

@article{Martin2008QuadripartiteVO,
  title={Quadripartite version of the Hajnal-Szemer{\'e}di theorem},
  author={Ryan R. Martin and Endre Szemer{\'e}di},
  journal={Discrete Mathematics},
  year={2008},
  volume={308},
  pages={4337-4360}
}
Let G be a quadripartite graph with N vertices in each vertex class and each vertex is adjacent to at least (3/4)N vertices in each of the other classes. There exists an N0 such that, if N ≥ N0, then G contains a subgraph that consists of N vertex-disjoint copies of K4. 

Citations

Publications citing this paper.
Showing 1-10 of 15 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Variants of the Hajnal-Szemerédi theorem

  • E. Fischer
  • J. of Graph Theory, 31:275–282
  • 1999
Highly Influential
5 Excerpts

Proof of a conjecture of P

  • A. Hajnal, E. Szemerédi
  • Erdős. Combinatorial Theory and its Applications…
  • 1970
Highly Influential
9 Excerpts

Proof of a conjecture of P . Erdős

  • G. N. Sárközy J. Komlós, E. Szemerédi
  • Combina - torial Theory and its Applications…
  • 2000

Regular partitions of graphs

  • E. Szemerédi
  • Problèmes Combinatoires et Théorie des Graphes…
  • 1978
1 Excerpt

On the theory of graphs

  • P. Turán
  • Colloquium Math., 3:19–30
  • 1954
2 Excerpts

Similar Papers

Loading similar papers…