Quadriceps Function and Hamstrings Co-Activation After Anterior Cruciate Ligament Reconstruction.

Abstract

CONTEXT   Individuals with anterior cruciate ligament reconstruction (ACLR) have quadriceps dysfunction that contributes to physical disability and posttraumatic knee osteoarthritis. Quadriceps function in the ACLR limb is commonly evaluated relative to the contralateral uninjured limb. Bilateral quadriceps dysfunction is common in individuals with ACLR, potentially biasing these evaluations. OBJECTIVE   To compare quadriceps function between individuals with ACLR and uninjured control participants. DESIGN   Cross-sectional study. SETTING   Research laboratory. PATIENTS OR OTHER PARTICIPANTS   Twenty individuals with unilateral ACLR (age = 21.1 ± 1.7 years, mass = 68.3 ± 14.9 kg, time since ACLR = 50.7 ± 21.3 months; females = 14; Tegner Score = 7.1 ± 0.3; 16 patellar tendon autografts, 3 hamstrings autografts, 1 allograft) matched to 20 control participants (age = 21.2 ± 1.2 years, mass = 67.9 ± 11.3 kg; females = 14; Tegner Score = 7.1 ± 0.4) on age, sex, body mass index, and Tegner Activity Scale. MAIN OUTCOME MEASURE(S)   Maximal voluntary isometric knee extension was performed on an isokinetic dynamometer. Peak torque (PT), rate of torque development (RTD), electromyographic (EMG) amplitude, central activation ratio (CAR), and hamstrings EMG amplitude were assessed during maximal voluntary isometric knee extension and compared between groups using independent-samples t tests. Relationships between hamstrings co-activation and quadriceps function were assessed using Pearson correlations. RESULTS   Participants with anterior cruciate ligament reconstruction displayed lesser quadriceps PT (1.86 ± 0.74 versus 2.56 ± 0.37 Nm/kg, P = .001), RTD (39.4 ± 18.7 versus 52.9 ± 16.4 Nm/s/kg, P = .03), EMG amplitude (0.25 ± 0.12 versus 0.37 ± 0.26 mV, P = .04), and CAR (83.3% ± 11.1% versus 93.7% ± 3.2%, P = .002) and greater hamstrings co-activation (27.2% ± 12.8% versus 14.3% ± 3.7%, P < .001) compared with control participants. Correlations were found between hamstrings co-activation and PT (r = -0.39, P = .007), RTD (r = -0.30, P = .03), and EMG amplitude (r = -0.30, P = .03). CONCLUSIONS   Individuals with ACLR possessed deficits in PT, RTD, and CAR compared with control participants. Peak torque is the net result of all agonist and antagonist activity, and lesser PT in individuals with ACLR is partially attributable to greater hamstrings co-activation.

DOI: 10.4085/1062-6050-52.3.05

6 Figures and Tables

Cite this paper

@article{Pamukoff2017QuadricepsFA, title={Quadriceps Function and Hamstrings Co-Activation After Anterior Cruciate Ligament Reconstruction.}, author={Derek N. Pamukoff and Brian G. Pietrosimone and Eric D. Ryan and D Richard Lee and J. Troy Blackburn}, journal={Journal of athletic training}, year={2017}, volume={52 5}, pages={422-428} }