QUANTUM SUPERGROUPS I. FOUNDATIONS

@article{Clark2013QUANTUMSI,
  title={QUANTUM SUPERGROUPS I. FOUNDATIONS},
  author={Sean Clark and D. Hill and W. Wang},
  journal={Transformation Groups},
  year={2013},
  volume={18},
  pages={1019-1053}
}
In this part one of a series of papers, we introduce a new version of quantum covering and super groups with no isotropic odd simple root, which is suitable for the study of integrable modules, integral forms, and the bar involution. A quantum covering group involves parameters q and π with π2 = 1, and it specializes at π = −1 to a quantum supergroup. Following Lusztig, we formulate and establish various structural results of the quantum covering groups, including a bilinear form, quasi… Expand
16 Citations
Quantum supergroups VI. Roots of $1$
  • 1
  • PDF
Quantum Supergroups III. Twistors
  • 25
  • PDF
Drinfeld double of deformed quantum algebras
  • PDF
Quantum supergroups IV: the modified form
  • 8
  • PDF
Quantum Supergroups V. Braid Group Action
  • 4
  • PDF
...
1
2
...

References

SHOWING 1-10 OF 20 REFERENCES
Introduction to Quantum Groups
  • 656
  • Highly Influential
  • PDF
Categorification of quantum Kac-Moody superalgebras
  • 41
  • PDF
Quantum Groups
  • 2,516
  • PDF
Quiver Hecke superalgebras
  • 48
  • PDF
Lectures on Quantum Groups
  • 352
  • PDF
Canonical Basis for Quantum $${\mathfrak{osp}(1|2)}$$
  • 20
  • PDF
Crystal Bases forUq(osp(1, 2r))
  • 16
...
1
2
...