QUANTIFYING AND CORRECTING THE BIAS IN ESTIMATED RISK MEASURES

@inproceedings{Kim2005QUANTIFYINGAC,
  title={QUANTIFYING AND CORRECTING THE BIAS IN ESTIMATED RISK MEASURES},
  author={Joseph H. T. Kim and Mary Rosalyn Hardy},
  year={2005}
}
In this paper we explore the bias in the estimation of the Value at Risk and Conditional Tail Expectation risk measures using Monte Carlo simulation. We assess the use of bootstrap techniques to correct the bias for a number of different examples. In the case of the Conditional Tail Expectation, we show that application of the exact bootstrap can improve estimates, and we develop a practical guideline for assessing when to use the exact bootstrap. 

References

Publications referenced by this paper.
SHOWING 1-10 OF 14 REFERENCES

The exact bootstrap mean and variance of an L-estimator

  • A. D. HUTSON, M. D. ERNST
  • Journal of Royal Statistical Society : Series B
  • 2000
Highly Influential
3 Excerpts

VaR is subject to a significant positive bias

  • K. INUI, M. KIJIMA, A. KITANO
  • tistician,
  • 2005
1 Excerpt

Variance of the CTE estimator

  • H. MAUSSER
  • North American Actuarial Journal
  • 2005

A real example that illustrates interesting properties of boostrap bias correction

  • N. L. JOHNSON, S. KOTZ, A. W. KEMP
  • The American Statistician
  • 2003

Report of the CIA task force on segregated fund investment guarantees

  • H. A. DAVID
  • 2002

Calculating quantile - based risk analytics with L - estimators

  • T. RYCHLIK
  • Algo Research Quarterly
  • 2001

Coherent measure of risk

  • P. ARTZNER, F. DELBAEN, J. M. EBER, D. HEATH
  • 1999
1 Excerpt

Bounds for expectations of L - estimates

  • N. Balakrishnan, C. R. Rao, J. L. WIRCH, M. R. HARDY
  • 1998

Sample quantiles in statistical packages

  • K. INUI, M. KIJIMA, A. KITANO
  • 1996

An introduction to the bootstrap

  • versity Press, B. New York. EFRON, R. J. TIBSHIRANI
  • 1993

Similar Papers

Loading similar papers…