Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type An
@article{Holm2010PtolemyDA, title={Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type An}, author={T. Holm and P. J{\o}rgensen and M. Rubey}, journal={Journal of Algebraic Combinatorics}, year={2010}, volume={34}, pages={507-523} }
We give a complete classification of torsion pairs in the cluster category of Dynkin type An. Along the way we give a new combinatorial description of Ptolemy diagrams, an infinite version of which was introduced by Ng (1005.4364v1 [math.RT], 2010). This allows us to count the number of torsion pairs in the cluster category of type An. We also count torsion pairs up to Auslander–Reiten translation.
24 Citations
Ptolemy diagrams and torsion pairs in the cluster categories of Dynkin type D
- Mathematics, Computer Science
- Adv. Appl. Math.
- 2013
- 10
- PDF
Mutation of Torsion Pairs in Triangulated Categories and its Geometric Realization
- Mathematics
- 2011
- 21
- PDF
Cluster tilting subcategories and torsion pairs in Igusa–Todorov cluster categories of Dynkin type $$A_{ \infty }$$A∞
- Mathematics
- 2017
- 7
- PDF
Cotorsion pairs in cluster categories of type A∞∞
- Mathematics, Computer Science
- J. Comb. Theory, Ser. A
- 2018
- 2
- PDF
References
SHOWING 1-10 OF 25 REFERENCES