Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type An

@article{Holm2010PtolemyDA,
  title={Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type An},
  author={T. Holm and P. J{\o}rgensen and M. Rubey},
  journal={Journal of Algebraic Combinatorics},
  year={2010},
  volume={34},
  pages={507-523}
}
  • T. Holm, P. Jørgensen, M. Rubey
  • Published 2010
  • Mathematics
  • Journal of Algebraic Combinatorics
  • We give a complete classification of torsion pairs in the cluster category of Dynkin type An. Along the way we give a new combinatorial description of Ptolemy diagrams, an infinite version of which was introduced by Ng (1005.4364v1 [math.RT], 2010). This allows us to count the number of torsion pairs in the cluster category of type An. We also count torsion pairs up to Auslander–Reiten translation. 
    24 Citations

    Figures from this paper

    Ptolemy diagrams and torsion pairs in the cluster categories of Dynkin type D
    • 10
    • PDF
    Cyclic Sieving for torsion pairs in the cluster category of Dynkin type A_n
    • 2
    • PDF
    Torsion pairs in cluster tubes
    • 12
    • PDF
    Classification of cosilting modules in type $\tilde{A}$
    • 1
    • Highly Influenced
    • PDF
    Torsion Pairs and Rigid Objects in Tubes
    • 24
    • PDF
    Cotorsion pairs in cluster categories of type A∞∞
    • 2
    • PDF

    References

    SHOWING 1-10 OF 25 REFERENCES
    A characterization of torsion theories in the cluster category of Dynkin type A_{\infty}
    • 21
    • PDF
    Homological and Homotopical Aspects of Torsion Theories
    • 323
    • PDF
    Tilting theory and cluster combinatorics
    • 758
    • PDF
    On triangulated orbit categories
    • 498
    • PDF
    Quivers with relations arising from clusters $(A_n$ case)
    • 389
    • PDF
    Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories
    • 274
    • PDF