Protecting the Self: The Effect of Social-evaluative Threat on Neural Representations of Self

Abstract

One of the most robust ways that people protect themselves from social-evaluative threat is by emphasizing the desirability of their personal characteristics, yet the neural underpinnings of this fundamental process are unknown. The current fMRI study addresses this question by examining self-evaluations of desirability (in comparison with other people) as a response to threat. Participants judged how much personality traits described themselves in comparison with their average peer. These judgments were preceded by threatening or nonthreatening social-evaluative feedback. Self-evaluations made in response to threat significantly increased activation in a number of regions including the OFC, medial pFC, lateral pFC, amygdala, and insula. Individual differences in the extent to which threat increased desirability were significantly correlated with medial OFC activity. This is the first study to examine the neural associations of a fundamental self-protection strategy: responding to threat by emphasizing the self's desirability. Although neural research has separately examined self-evaluation processes from the regulation of social-evaluative threat, little is known about the interplay between the two. The findings build on this previous research by showing that regions, often associated with self-evaluation, are modulated by the degree to which people respond to threat by emphasizing their own desirability.

DOI: 10.1162/jocn_a_00343

Extracted Key Phrases

4 Figures and Tables

0102030201520162017
Citations per Year

Citation Velocity: 10

Averaging 10 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Hughes2013ProtectingTS, title={Protecting the Self: The Effect of Social-evaluative Threat on Neural Representations of Self}, author={Brent L. Hughes and Jennifer S. Beer}, journal={Journal of cognitive neuroscience}, year={2013}, volume={25 4}, pages={613-22} }