Properties of compacton-anticompacton collisions.
@article{Cardenas2011PropertiesOC, title={Properties of compacton-anticompacton collisions.}, author={Andres Cardenas and Bogdan Mihaila and Fred Cooper and Avadh B Saxena}, journal={Physical review. E, Statistical, nonlinear, and soft matter physics}, year={2011}, volume={83 6 Pt 2}, pages={ 066705 } }
We study the properties of compacton-anticompacton collision processes. We compare and contrast results for the case of compacton-anticompacton solutions of the K(l,p) Rosenau-Hyman (RH) equation for l = p = 2, with compacton-anticompacton solutions of the L(l,p) Cooper-Shepard-Sodano (CSS) equation for p = 1 and l = 3. This study is performed using a Padé discretization of the RH and CSS equations. We find a significant difference in the behavior of compacton-anticompacton scattering. For the…
12 Citations
Numerical interactions between compactons and kovatons of the Rosenau-Pikovsky K(cos) equation
- Physics, MathematicsCommun. Nonlinear Sci. Numer. Simul.
- 2013
Removing trailing tails and delays induced by artificial dissipation in Padé numerical schemes for stable compacton collisions
- Physics, MathematicsAppl. Math. Comput.
- 2013
Removing trailing tails and delays induced by artificial dissipation for numerically stable compacton collisions
- Physics, Mathematics
- 2012
The numerical simulation of colliding solitary waves with compact support arising from the Rosenau-Hyman K(n,n) equation requires the addition of artificial dissipation for stability. The price to…
Peakompactons: Peaked compact nonlinear waves
- Mathematics
- 2016
This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. These peaked…
Nonsemilinear one-dimensional PDEs: analysis of PT deformed models and numerical study of compactons
- Mathematics
- 2015
This thesis is based on the work done during my PhD studies and is roughly divided in two independent parts. The first part consists of Chapters 1 and 2 and is based on the two papers Cavaglia et al.…
On the Nonlinear Perturbation Rosenau-Hyman Equation: A Model of Nonlinear Scattering Wave
- Mathematics
- 2015
We investigate a nonlinear wave phenomenon described by the perturbation Rosenau-Hyman equation within the concept of derivative with fractional order. We used the Caputo fractional derivative and we…
On the Nonlinear Perturbation K(n,m) Rosenau-Hyman Equation: A Model of Nonlinear Scattering Wave
- Materials Science
- 2015
1 Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa 2Institute of Space Sciences, P.O. Box MG-23,…
Robustness of the absolute Rosenau–Hyman <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si595.svg" display="inline" id="d1e2698"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>K</mml:mi><mml:mo>|</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml
- ArtChaos, Solitons & Fractals
- 2023
Compacton-anticompacton collisions in the Rosenau–Hyman <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2519" altimg="si11.svg"><mml:mrow><mml:mi>K</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>)</mml:mo></mml:mrow>
- ArtCommunications in Nonlinear Science and Numerical Simulation
- 2022
References
SHOWING 1-10 OF 10 REFERENCES
On a Hamiltonian PDE arising in Magma Dynamics
- Mathematics
- 2008
In this article we discuss a new Hamiltonian PDE arising from a class of equations appearing in the study of magma, partially molten rock, in the Earth's interior. Under physically justifiable…
Low Temp
- Phys. 24, 484
- 1998
Pramana–J
- Phys. 75, 375
- 2009
Nonlinearity 20
- 21
- 2007
Graves-Morris, Padé Approximants
- 1995
Commun
- Pure Appl. Math. 49, 85
- 1996
Complexity 11
- 30
- 2006
Discrete Cont
- Dyn. Sys. 10, 903
- 2008
Physica D 123
- 82
- 1998
Chaos Solitons Fractals 14
- 1193
- 2002