Properties of QBist State Spaces
@article{Appleby2009PropertiesOQ, title={Properties of QBist State Spaces}, author={David Marcus Appleby and {\AA}sa Ericsson and Christopher A. Fuchs}, journal={Foundations of Physics}, year={2009}, volume={41}, pages={564-579} }
Every quantum state can be represented as a probability distribution over the outcomes of an informationally complete measurement. But not all probability distributions correspond to quantum states. Quantum state space may thus be thought of as a restricted subset of all potentially available probabilities. A recent publication (Fuchs and Schack, arXiv:0906.2187v1, 2009) advocates such a representation using symmetric informationally complete (SIC) measurements. Building upon this work we study…
64 Citations
Geometry of Quantum States from Symmetric Informationally Complete Probabilities
- Physics
- 2013
It is usually taken for granted that the natural mathematical framework for quantum mechanics is the theory of Hilbert spaces, where pure states of a quantum system correspond to complex vectors of…
Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements
- Physics
- 2011
Generalized quantum measurements [also known as positive operator-valued measures (POVMs)] are of great importance in quantum information and quantum foundations but are often difficult to perform.…
Experimental characterization of qutrits using symmetric, informationally complete positive operator-valued measures
- PhysicsApplications of Optics and Photonics
- 2011
Generalized quantum measurements (also known as positive operator-valued measures or POVMs) are of great importance in quantum information and quantum foundations, but often difficult to perform. We…
Quantum Theory is a Quasi-stochastic Process Theory
- Mathematics
- 2017
There is a long history of representing a quantum state using a quasi-probability distribution: a distribution allowing negative values. In this paper we extend such representations to deal with…
Exploring the geometry of qutrit state space using symmetric informationally complete probabilities
- Mathematics
- 2013
We examine the geometric structure of qutrit state space by identifying the outcome probabilities of symmetric informationally complete (SIC) measurements with quantum states. We categorize the…
QBism, the Perimeter of Quantum Bayesianism
- Physics
- 2010
This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian…
Introducing the Qplex: a novel arena for quantum theory
- Mathematics
- 2016
Abstract
We reconstruct quantum theory starting from the premise that, as Asher Peres remarked, “Unperformed experiments have no results.” The tools of quantum information theory, and in particular…
Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics
- Mathematics
- 2010
Symmetric informationally complete positive operator valued measures (SIC-POVMs) are studied within the framework of the probability representation of quantum mechanics. A SIC-POVM is shown to be a…
Probability representation of quantum dynamics using pseudostochastic maps
- MathematicsPhysical Review A
- 2020
In this work, we consider a probability representation of quantum dynamics for finite-dimensional quantum systems with the use of pseudostochastic maps acting on true probability distributions. These…
Quasiprobability Representations of Quantum Mechanics with Minimal Negativity.
- PhysicsPhysical review letters
- 2016
This study introduces three measures of negativity concerning the representations of quantum states, unitary transformations, and quantum channels, respectively and reveals an interesting tradeoff between negativity and symmetry in quasiprobability representations.
References
SHOWING 1-10 OF 17 REFERENCES
Symmetric informationally complete quantum measurements
- Mathematics
- 2003
It is conjecture that a particular kind of group-covariant SIC–POVM exists in arbitrary dimensions, providing numerical results up to dimension 45 to bolster this claim.
Tight informationally complete quantum measurements
- Mathematics
- 2006
We introduce a class of informationally complete positive-operator-valued measures which are, in analogy with a tight frame, 'as close as possible' to orthonormal bases for the space of quantum…
Parts of quantum states
- Mathematics
- 2005
It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the…
Information processing in generalized probabilistic theories
- Physics
- 2005
A framework in which a variety of probabilistic theories can be defined, including classical and quantum theories, and many others, is introduced, and a tensor product rule for combining separate systems can be derived.
Quantum-Bayesian Coherence
- Philosophy
- 2009
It is argued that the Born Rule should be seen as an empirical addition to Bayesian reasoning itself, and how to view it as a normative rule in addition to usual Dutch-book coherence is shown.
About SIC POVMs and discrete Wigner distributions
- Mathematics
- 2005
A set of d2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is…
Symmetric Informationally Complete POVM tomography: theory and applications.
- Mathematics
- 2007
Quantum Tomography is a branch of Quantum Information Theory that deals with the recognition and estimation of quantum states. Our aim is to present a new technique for quantum tomography of quantum…
Cloning and Broadcasting in Generic Probabilistic Theories
- Economics
- 2006
We prove generic versions of the no-cloning and no-broadcasting theorems, applicable to essentially {\em any} non-classical finite-dimensional probabilistic model that satisfies a no-signaling…
SIC-POVMs: A new computer study
- Mathematics
- 2009
We report on a new computer study into the existence of d2 equiangular lines in d complex dimensions. Such maximal complex projective codes are conjectured to exist in all finite dimensions and are…