Proof-theoretic analysis of KPM

@article{Rathjen1991ProoftheoreticAO,
  title={Proof-theoretic analysis of KPM},
  author={Michael Rathjen},
  journal={Archive for Mathematical Logic},
  year={1991},
  volume={30},
  pages={377-403}
}
AbstractKPM is a subsystem of set theory designed to formalize a recursively Mahlo universe of sets. In this paper we show that a certain ordinal notation system is sufficient to measure the proof-theoretic strength ofKPM. This involves a detour through an infinitary calculus RS(M), for which we prove several cutelimination theorems. Full cut-elimination is available for derivations of $$\Sigma (L_{\omega _1^c } )$$ sentences, whereω1c denotes the least nonrecursive ordinal. This paper is self… CONTINUE READING

Topics from this paper.

Citations

Publications citing this paper.
SHOWING 1-10 OF 56 CITATIONS

FILTER CITATIONS BY YEAR

1992
2018

CITATION STATISTICS

  • 7 Highly Influenced Citations

References

Publications referenced by this paper.
SHOWING 1-10 OF 15 REFERENCES

Ein Mengensystem ohne Kollabierungsfunktionen. Oberseminarvortrag

W. Buchholz
  • Miinchen
  • 1984
VIEW 11 EXCERPTS
HIGHLY INFLUENTIAL

Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen A ~CA und AX ~+ BI liegenden Beweisst / irke

M. Rathjen
  • Dissertation Miinster
  • 1988

Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen A~-CA und AX~--CA+BI liegenden Beweisst/irke

M. Rathjen
  • Dissertation Miinster
  • 1988

A new system of proof-theoretic ordinal functions

W. Buchholz
  • Arch. Math. Logik Grundlagenforsch. 32, 195-207
  • 1986