Proof of a conjecture by Ahlgren and Ono on the non-existence of certain partition congruences
@article{Radu2013ProofOA, title={Proof of a conjecture by Ahlgren and Ono on the non-existence of certain partition congruences}, author={Cristian-Silviu Radu}, journal={Transactions of the American Mathematical Society}, year={2013}, volume={365}, pages={4881-4894} }
Let p(n) denote the number of partitions of n. Let A,B ∈ N with A > B and ≥ 5 a prime, such that p(An+B) ≡ 0 (mod ), n ∈ N. Then we will prove that |A and ( 24B−1 ) = (−1 ) . This settles an open problem by Scott Ahlgren and Ken Ono. Our proof is based on results by Deligne and Rapoport.
13 Citations
Congruences like Atkin's for the partition function
- Mathematics
- 2021
Let p(n) be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form p(Qln+ β) ≡ 0 (mod l) where l and Q are prime and 5 ≤ l ≤ 31; these lie in two…
Congruences on Square-Classes for the Partition Function
- Mathematics
- 2019
We considerably improve Ono's and Ahlgren-Ono's work on the frequent occurrence of Ramanujan-type congruences for the partition function, and demonstrate that Ramanujan-type congruences occur in…
Arithmetic properties of septic partition functions
- Mathematics
- 2021
Congruences and related identities are derived for a set of colored and weighted partition functions whose generating functions generate the graded algebra of integer weight modular forms of level…
Nonholomorphic Ramanujan-type congruences for Hurwitz class numbers
- MathematicsProceedings of the National Academy of Sciences
- 2020
It is discovered that Ramanujan-type congruences for Hurwitz class numbers can be supported on nonholomorphic generating series and a divisibility result is established for such non holomorphic congruence of Hurwitzclass numbers.
Scarcity of congruences for the partition function
- Mathematics
- 2020
The arithmetic properties of the ordinary partition function $p(n)$ have been the topic of intensive study for the past century. Ramanujan proved that there are linear congruences of the form $p(\ell…
Relations among Ramanujan-Type Congruences II
- Mathematics
- 2021
We show that Ramanujan-type congruences are preserved by the action of the shallow Hecke algebra and provide several structure results for them. We discover a dichotomy between congruences…
Relations among Ramanujan-Type Congruences I.
- Mathematics
- 2020
We prove that Ramanujan-type congruences for integral weight modular forms away from the level and the congruence prime are equivalent to specific Hecke congruences.More generally, for weakly…
Congruences of Hurwitz class numbers on square classes
- Mathematics
- 2022
We extend a holomorphic projection argument of our earlier work to prove a novel divisibility result for non-holomorphic congruences of Hurwitz class numbers. This result allows us to establish…
Relations among Ramanujan-Type Congruences I Ramanujan-type Congruences in Integral Weights
- Mathematics
- 2020
We prove that Ramanujan-type congruences for integral weight modular forms away from the level and the congruence prime are equivalent to specific Hecke congruences. More generally, for weakly…
References
SHOWING 1-10 OF 24 REFERENCES
Distribution of the partition function modulo $m$
- Mathematics
- 2000
Ramanujan (and others) proved that the partition function satisfies a number of striking congruences modulo powers of 5, 7 and 11. A number of further congruences were shown by the works of Atkin,…
Proof of a conjecture of Ramanujan
- MathematicsGlasgow Mathematical Journal
- 1967
We write and so that p(n) is the number of unrestricted partitions of n. Ramanujan [1] conjectured in 1919 that if q = 5, 7, or 11, and 24m ≡ 1 (mod qn), then p(m) ≡ 0 (mod qn). He proved his…
Note on Partitions Modulo 5
- Mathematics
- 1967
In the paper preceding this one, Parkin and Shanks study the distribution of the values of the unrestricted partition function p(n) modulo 2 and come to the conclusion that there is no apparent…
Congruence properties for the partition function
- MathematicsProceedings of the National Academy of Sciences of the United States of America
- 2001
It is reported that such congruences are much more widespread than was previously known, and the theoretical framework that appears to explain every known Ramanujan-type congruence is described.
SOME PROPERTIES OF p(n) AND c(n) MODULO POWERS OF 13
- Mathematics
- 1967
j(^r) = E c(n)xn = (1 +240 0 u3(n)xn) /xf24(x) 744, where 03(n) = d3. dln Then p(n) is just the number of unrestricted partitions of n, and c(n) is the Fourier coefficient of Klein's modular…
Distribution of the partition function modulo composite integers M
- Mathematics
- 2000
seem to be distinguished by the fact that they are exceptionally rare. Recently, Ono [O1] has gone some way towards quantifying the latter assertion. More recently, Ono [O2] has made great progress…
Arithmetic properties of the partition function
- Mathematics
- 2003
Let p(n) denote the number of partitions of the positive integer n; p(n) is the number of representations of n as a non-increasing sequence of positive integers (by convention, we agree that p(0) = 1…
Dyson's crank of a partition
- Mathematics
- 1988
holds. He was thus led to conjecture the existence of some other partition statistic (which he called the crank); this unknown statistic should provide a combinatorial interpretation of ^-p(lln + 6)…
Cranks andt-cores
- Mathematics
- 1990
SummaryNew statistics on partitions (calledcranks) are defined which combinatorially prove Ramanujan's congruences for the partition function modulo 5, 7, 11, and 25. Explicit bijections are given…
Modular forms on noncongruence subgroups
- Mathematics
- 1987
In this paper I will describe some results and open problems connected with noncongruence subgroups of PSL2(z). Most of these have their origins in the fundamental paper of Atkin and Swinnerton-Dyer…