Projective Holonomy II : Cones and Complete Classifications

@inproceedings{Armstrong2007ProjectiveHI,
  title={Projective Holonomy II : Cones and Complete Classifications},
  author={Stuart Armstrong},
  year={2007}
}
The aim of this paper and its prequel is to introduce and classify the irreducible holonomy algebras of the projective Tractor connection. This is achieved through the construction of a ‘projective cone’, a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds with each possible holonomy algebra. 

From This Paper

Figures, tables, and topics from this paper.

Citations

Publications citing this paper.
Showing 1-2 of 2 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Gover: Standard tractors and the conformal ambient metric construction, Ann

  • A.R.A. Čap
  • Global Anal. Geom
  • 2003

Hirachi: Ambient metric construction of Q-curvature in conformal and CR geometries

  • K. C. Fefferman
  • Math. Res. Lett
  • 2003

Nakamaye: Sasakian geometry, homotopy spheres and positive Ricci curvature, Topology

  • BGN C.P Boyer, M. K. Galicki
  • 2003

Schwachhöfer: Classification of Irreducible Holonomies of Torsion-free Affine Connections

  • L. S. Merkulov
  • Annals of Mathematics,
  • 1999

Sasakian geometry , homotopy spheres and positive Ricci curvature , Topology 42 ( 2003 ) , No . 5 , 981 - 1002 . [ Bry ] R . Bryant : Metrics with exceptional holonomy

  • K. Galicki
  • J . Reine Angew . Math .
  • 1998

Swann: Hypercomplex structures associated to quaternionic manifolds

  • H. Pedersen, A.F.Y.S. Poon
  • Differential Geom. Appl
  • 1998

Foundations of differential geometry. Vol. I, Wiley Classics Library. A Wiley-Interscience Publication

  • S. Kobayashi, K. Nomizu
  • 1996

Compact hypercomplex and quaternionic manifolds

  • Joy D. Joyce
  • J. Differential Geom
  • 1992

Joyce : Compact hypercomplex and quaternionic manifolds

  • S. Kobayashi, K Nomizu
  • J . Differential Geom .
  • 1992

Twistors and Killing spinors on Riemannian manifolds , Teubner - Texte zur Mathematik [ Teubner Texts in Mathematics ] , 124

  • R. Grunewald
  • J . Geom . Phys .
  • 1991

Similar Papers

Loading similar papers…