Pro-p-Iwahori invariants for SL_2 and L-packets of Hecke modules

@article{Kozio2013PropIwahoriIF,
  title={Pro-p-Iwahori invariants for SL\_2 and L-packets of Hecke modules},
  author={Karol Kozioł},
  journal={arXiv: Representation Theory},
  year={2013}
}
  • K. Kozioł
  • Published 28 August 2013
  • Mathematics
  • arXiv: Representation Theory
Let p be a prime number, and F a nonarchimedean local field of residual characteristic p. We explore the interaction between the pro-p-Iwahori-Hecke algebras of the group GL_n(F) and its derived subgroup SL_n(F). Using the interplay between these two algebras, we deduce two main results. The first is an equivalence of categories between Hecke modules in characteristic p over the pro-p-Iwahori-Hecke algebra of SL_2(Q_p) and smooth mod-p representations of SL_2(Q_p) generated by their pro-p… 
From pro-$p$ Iwahori–Hecke modules to $(\varphi,\Gamma)$-modules, I
Let ${\mathfrak o}$ be the ring of integers in a finite extension $K$ of ${\mathbb Q}_p$, let $k$ be its residue field. Let $G$ be a split reductive group over ${\mathbb Q}_p$, let $T$ be a maximal
Hecke module structure on first and top pro-$p$-Iwahori cohomology
Let $p\geq 5$ be a prime number, $G$ a split connected reductive group defined over a $p$-adic field, and $I_1$ a choice of pro-$p$-Iwahori subgroup. Let $C$ be an algebraically closed field of
Coefficient Systems on the Bruhat-Tits Building and Pro-𝑝 Iwahori-Hecke Modules
  • Jan Kohlhaase
  • Computer Science
    Memoirs of the American Mathematical Society
  • 2022
TLDR
The group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic of a commutative quasi-Frobenius ring is proposed.
The modular pro-𝑝 Iwahori-Hecke Ext-algebra
Let F be a locally compact nonarchimedean field of positive residue characteristic p and k a field of characteristic p. Let G be the group of F-rational points of a connected reductive group over F
Homological dimension of simple pro-$p$-Iwahori–Hecke modules
  • K. Kozioł
  • Mathematics
    Mathematical Research Letters
  • 2019
Let $G$ be a split connected reductive group defined over a nonarchimedean local field of residual characteristic $p$, and let $\mathcal{H}$ be the pro-$p$-Iwahori--Hecke algebra associated to a
The first pro-$p$-Iwahori cohomology of mod-$p$ principal series for $p$-adic $GL_n$
  • K. Kozioł
  • Mathematics
    Transactions of the American Mathematical Society
  • 2018
Let $p\geq 3$ be a prime number and $F$ a $p$-adic field. Let $I_1$ denote the pro-$p$-Iwahori subgroup of $\textrm{GL}_n(F)$, and $\mathcal{H}$ the pro-$p$-Iwahori--Hecke algebra of
Parabolic induction in characteristic p
Let $$\mathrm{F}$$F (resp. $$\mathbb F$$F) be a nonarchimedean locally compact field with residue characteristic p (resp. a finite field with characteristic p). For $$k=\mathrm{F}$$k=F or $$k=\mathbb
Representations of a $p$-adic group in characteristic $p$
Let $F$ be a locally compact non-archimedean field of residue characteristic $p$, $\textbf{G}$ a connected reductive group over $F$, and $R$ a field of characteristic $p$. When $R$ is algebraically
From pro-$p$ Iwahori-Hecke modules to $(\varphi,\Gamma)$-modules, II
Let o be the ring of integers in a finite extension field of Qp, let k be its residue field. Let G be a split reductive group over Qp, let H(G, I0) be its pro-p-Iwahori Hecke o-algebra. In [2] we
...
...

References

SHOWING 1-10 OF 33 REFERENCES
An inverse Satake isomorphism in characteristic p
Let F be a local field with finite residue field of characteristic p and k an algebraic closure of the residue field. Let G be the group of F-points of a F-split connected reductive group. In the
Représentations p-adiques des corps locaux (1ère partie)
Soient p un nombre premier, k un corps parfait de caracteristique p, W = W(k) l’anneau des vecteurs de Witt a coefficients dans k et K0 son corps des fractions.
Pro-p-Iwahori Hecke ring and supersingular -representations
Abstract.The motivation of this paper is the search for a Langlands correspondence modulo p. We show that the pro-p-Iwahori Hecke ring of a split reductive p-adic group G over a local field F of
SUR QUELQUES REPRÉSENTATIONS MODULAIRES ET $p$-ADIQUES DE $\mathrm{GL}_2(\bm{Q}_{p})$. II
  • C. Breuil
  • Mathematics
    Journal of the Institute of Mathematics of Jussieu
  • 2003
Nous conjecturons que la réduction modulo $p$ des représentations cristallines irréductibles de dimension 2 sur $\bar{\bm{Q}}_p$ de $\Gal(\bar{\bm{Q}}_p/\bm{Q}_p)$ peut être prédite par la réduction
Linear Algebraic Groups
Conventions and notation background material from algebraic geometry general notions associated with algebraic groups homogeneous spaces solvable groups Borel subgroups reductive groups rationality
...
...