Prioritized-LRTA*: Speeding Up Learning via Prioritized Updates

Abstract

Modern computer games demand real-time simultaneous control of multiple agents. Learning real-time search, which interleaves planning and acting, allows agents to both learn from experience and respond quickly. Such algorithms require no prior knowledge of the environment and can be deployed without pre-processing. We introduce PrioritizedLRTA*, an algorithm based on Prioritized Sweeping. This novel method focuses learning on important areas of the search space. A state’s importance is determined by the magnitude of the updates made to its neighbors. Empirical tests on path-finding in commercial game maps show a substantial learning speed-up over state of the art learning real-time heuristic search algorithms.

View Slides

Extracted Key Phrases

Cite this paper

@inproceedings{Rayner2006PrioritizedLRTASU, title={Prioritized-LRTA*: Speeding Up Learning via Prioritized Updates}, author={D. Chris Rayner and Katherine Davison and Vadim Bulitko and Jieshan Lu}, year={2006} }