Principal Component Analysis Based Filtering for Scalable, High Precision k-NN Search

@article{Feng2018PrincipalCA,
  title={Principal Component Analysis Based Filtering for Scalable, High Precision k-NN Search},
  author={Huan Feng and David M. Eyers and Steven Mills and Yongwei Wu and Zhiyi Huang},
  journal={IEEE Transactions on Computers},
  year={2018},
  volume={67},
  pages={252-267}
}
Approximate <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives> <inline-graphic xlink:href="eyers-ieq1-2748131.gif"/></alternatives></inline-formula> Nearest Neighbours (A <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives> <inline-graphic xlink:href="eyers-ieq2-2748131.gif"/></alternatives></inline-formula>NN) search is widely used in domains such as computer vision and machine learning. However, A<inline-formula><tex-math notation="LaTeX">$k$ </tex-math… CONTINUE READING
1 Extracted Citations
67 Extracted References
Similar Papers

Citing Papers

Publications influenced by this paper.

Referenced Papers

Publications referenced by this paper.
Showing 1-10 of 67 references

PCAF: Pricipal conponent analysis based filtering

  • H. Feng
  • 2016. [Online]. Available: https://github.com…
  • 2016
Highly Influential
10 Excerpts

Singular value decomposition and least squares solutions

  • G. H. Golub, C. Reinsch
  • Numerische Mathematik, vol. 14, no. 5, pp. 403…
  • 1970
Highly Influential
7 Excerpts

Similar Papers

Loading similar papers…