Primes in arithmetic progressions

  title={Primes in arithmetic progressions},
  author={Olivier Ramar{\'e} and Robert Rumely},
  journal={Math. Comput.},
Strengthening work of Rosser, Schoenfeld, and McCurley, we establish explicit Chebyshev-type estimates in the prime number theorem for arithmetic progressions, for all moduli k ≤ 72 and other small moduli. 

From This Paper

Figures, tables, and topics from this paper.

Explore Further: Topics Discussed in This Paper


Publications referenced by this paper.

Stechkin, Rational inequalities and zeros of the Riemann zeta-function

  • S B.
  • Trudy Mat. Inst. Steklov
  • 1989
Highly Influential
6 Excerpts

Explicit bounds for some functions of prime numbers, Amer

  • J. B. Rosser
  • J. Math
  • 1941
Highly Influential
8 Excerpts

A Miller algorithm for an incomplete Bessel function

  • R. Terras
  • J. Comput. Phys
  • 1981
1 Excerpt

Explicit estimates for functions of primes in arithmetic progressions

  • K. S. McCurley
  • Ph.D. thesis, University of Illinois at Urbana…
  • 1981
1 Excerpt

Sharper bounds for the Chebyshev functions θ(X) and ψ(X)

  • L. Schoenfeld
  • II, Math. Comp
  • 1976
3 Excerpts

Sharper bounds for the Chebyshev functions θ(X) and ψ(X)

  • J. B. Rosser, L. Schoenfeld
  • Math. Comp
  • 1975

Handbuch der Lehre von der Verteilung der Primzahlen, with an appendix by P

  • E. Landau
  • Bateman, 3rd edition, Chelsea, New York,
  • 1974

Similar Papers

Loading similar papers…