• Corpus ID: 237532401

Presque toute surface K3 contient une infinit\'e d'hypersurfaces Levi-plates lin\'eaires

  title={Presque toute surface K3 contient une infinit\'e d'hypersurfaces Levi-plates lin\'eaires},
  author={F'elix Lequen},
Résumé. On s’intéresse à la construction d’hypersurfaces Levi-plates analytiques réelles dans les surfaces K3. On peut en construire dans les tores complexes de dimension 2 en prenant des images d’hyperplans réels. On montre que ≪ presque toute ≫ surface K3 contient une infinité d’hypersurfaces Levi-plates de ce type. La preuve repose principalement sur une construction récente due à Koike-Uehara, ainsi que sur les idées de Verbitsky sur les structures complexes ergodiques et une adaptation d… 



A note on projective Levi flats and minimal sets of algebraic foliations

© Annales de l’institut Fourier, 1999, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions

Inexistence de pavages mesurables invariants par un r\'eseau dans un espace homog\`ene d'un groupe de Lie simple

Soit Γ un groupe dénombrable agissant sur un espace mesuré σ-fini (X,B, μ), tel que Γ quasi-préserve la mesure μ : pour tout γ ∈ Γ et tout A ∈ B, μ(γA) = 0 si et seulement si μ(A) = 0. On dit que

Levi-flat hypersurfaces and their complement in complex surfaces

In this work we study analytic Levi-flat hypersurfaces in complex algebraic surfaces. First, we show that if this foliation admits chaotic dynamics (i.e. if it does not admit a transverse invariant

Topology and dynamics of laminations in surfaces of general type

where αjj′ is continuous in both variables and holomorphic with respect to the first one. A plaque is the preimage in M of a horizontal disk D × {uj} ⊂ D × τj . The leaves are the smallest connected

Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem

We study the dynamics of the geodesic and horocycle flows of the unit tangent bundle $(\hat M, T^1\mathcal{F})$ of a compact minimal lamination $(M,\mathcal F)$ by negatively curved surfaces. We give

A Survey on Levi Flat Hypersurfaces

Works on Levi flat hypersurfaces in complex manifolds will be reviewed with an emphasis on the cases in \(\mathbb{C}\mathbb{P}^{n}\), complex tori and Hopf surfaces. Related results on locally

A gluing construction of K3 surfaces.

We develop a new method for constructing K3 surfaces. We construct such a K3 surface $X$ by patching two open complex surfaces obtained as the complements of tubular neighborhoods of elliptic curves

On the topology of compact smooth three-dimensional Levi-flat hypersurfaces

We study topological conditions that must be satisfied by a compactC∞ Levi-flat hypersurface in a two-dimensional complex manifold, as well as related questions about the holonomy of Levi-flat

On real submanifolds of Kähler manifolds foliated by complex submanifolds

by the study of topological properties of Levi-flat hypersurfaces of complex manifolds Let be a and real We that M a foliation whose complex submanifolds of In this we investigating between topology

On Levi flat hypersurfaces with transversely affine foliation

We prove the non-existence of real analytic Levi flat hypersurface whose complement is 1-convex and Levi foliation is transversely affine in a compact Kähler surface.