Prehension movements in a patient (AC) with posterior parietal cortex damage and posterior callosal section.


Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC's grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in prehension was revealed--a hemispace effect--in healthy controls only. Movements to the left hemispace were faster, longer, and with a smaller grasp aperture; perturbation of both object position and distance resulted in the attenuation of the direction effect on movement time and the time to velocity peak, with a reverse pattern in the time to maximum grip aperture. Nevertheless, the correlation between transport velocity amplitude and grasp aperture remained stable in both perturbed and non-perturbed movements, reflecting the coordination between reaching and grasping in control subjects. In contrast, transport and grasp, as well as their coordination in both direct and perturbed conditions, were negatively affected by the PPC and splenium lesion in AC, suggesting that transport and grasp rely on two functionally identifiable subsystems.

2 Figures and Tables


Citations per Year

58 Citations

Semantic Scholar estimates that this publication has 58 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Frak2006PrehensionMI, title={Prehension movements in a patient (AC) with posterior parietal cortex damage and posterior callosal section.}, author={Victor Frak and Yves Paulignan and Marc Jeannerod and François Michel and Henri Cohen}, journal={Brain and cognition}, year={2006}, volume={60 1}, pages={43-8} }