Preemptive analgesia with lidocaine prevents Failed Back Surgery Syndrome.


Failed Back Surgery Syndrome (FBSS) is commonly encountered in pain-treatment settings in the United States. We tested whether potential key factors in this syndrome, such as extracellular concentrations of excitatory amino acids (EAAs), are increased in the dorsal horn by synaptic release due to unintentional stretch and/or deformation/compression/transection of dorsal spinal structures during surgery. We hypothesized that pharmacological nerve block as a form of preemptive analgesia prior to any insult to dorsal root neurons will prevent an abnormally high increase in extracellular concentrations of EAAs in the dorsal horn and ultimately the establishment of central sensitization during back surgery. The L4 and L5 dorsal roots were cut bilaterally near the spinal cord to provide an adequate model to test for preemptive analgesia. Amino acid concentrations were measured by dorsal horn microdialysis sampling; EAAs aspartate and glutamate were significantly increased by 80% and 65% respectively, as were other amino acids compared to sham control values. Topical application of 1% Lidocaine, a voltage-gated Na(+) channel blocker, for 10 min prior to L4 and L5 bilateral dorsal rhizotomy (BDR) significantly attenuated the increase in EAA concentrations such that their values were not different from sham controls. Behavioral tests demonstrated significant hindlimb mechanical allodynia after BDRs that was significantly attenuated by Lidocaine pretreatment. Thus, Lidocaine pretreatment could offer a safe measure for prevention of chronic pain for back surgical procedures if given by intramuscular injection, topical administration onto spinal nerves and/or the dorsal spinal surface during surgical procedures that include nerve entrapment release, intervertebral disc modification and laminectomies.

Cite this paper

@article{Rooney2007PreemptiveAW, title={Preemptive analgesia with lidocaine prevents Failed Back Surgery Syndrome.}, author={Bill Rooney and Eric D. Crown and Claire E Hulsebosch and David J. McAdoo}, journal={Experimental neurology}, year={2007}, volume={204 2}, pages={589-96} }