Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.


Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein-protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.

DOI: 10.1101/gr.127191.111

Extracted Key Phrases

7 Figures and Tables

Citations per Year

163 Citations

Semantic Scholar estimates that this publication has 163 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Marbach2012PredictiveRM, title={Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.}, author={Daniel Marbach and Sushmita Roy and Ferhat Ay and Patrick Meyer and Rogerio Candeias and Tamer Kahveci and Christopher Aaron Bristow and Manolis Kellis}, journal={Genome research}, year={2012}, volume={22 7}, pages={1334-49} }