Power Series for Up-Down Min-Max Permutations

@article{Heneghan2014PowerSF,
  title={Power Series for Up-Down Min-Max Permutations},
  author={Fiacha D. Heneghan and K. Petersen},
  journal={The College Mathematics Journal},
  year={2014},
  volume={45},
  pages={83 - 91}
}
Summary Calculus and combinatorics overlap, in that power series can be used to study combinatorially defined sequences. In this paper, we use exponential generating functions to study a curious refinement of the Euler numbers, which count the number of “up-down” permutations of length n. 
2 Citations

References

SHOWING 1-7 OF 7 REFERENCES
A Survey of Alternating Permutations
A Note on Downup Permutations and 0-1-2 Trees
  • published electronically at http://www.stat.wisc.edu/ ̃callan/papersother/
  • 2012
generatingfunctionology
  • 3rd. ed.
  • 2006
A note on downup permutations and increasing 0-1-2 trees (2005), available at http://www.stat. wisc.edu/~callan/papersother
  • 2005
Sur les permutations alternées
Développement de secx et tanx
  • C. R. Math. Acad. Sci. Paris 88
  • 1879
Mémoire sur les permutations alternées
  • C. R. Math. Acad. Sci. Paris