Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.


Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2-14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats (P < 0.05). Also, HFD increased plasma corticosterone (196 ± 51 vs. 79 ± 18 pg/ml, P < 0.05) and leptin levels (1.8 ± 0.4 vs. 1.3 ± 0.1 ng/ml, P < 0.05) in female MatSep compared with control rats, whereas insulin and adiponectin levels were similar between groups. Female control and MatSep offspring were treated with MTP (50 µg/g ip) 30 min before the daily separation. MTP treatment significantly attenuated diet-induced obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease.

DOI: 10.1152/ajpendo.00308.2016

12 Figures and Tables

Cite this paper

@article{Murphy2017PostnatalTW, title={Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.}, author={Margaret O Murphy and Joseph B Herald and Caleb T Wills and Stanley G Unfried and Dianne M Cohn and Analia S. Loria}, journal={American journal of physiology. Endocrinology and metabolism}, year={2017}, volume={312 2}, pages={E98-E108} }