Positive Solutions for Higher Order Lidstone Boundary Value Problems. a New Approach via Sperner’s Lemma

@inproceedings{Palamides2004PositiveSF,
  title={Positive Solutions for Higher Order Lidstone Boundary Value Problems. a New Approach via Sperner’s Lemma},
  author={Panos K. Palamides},
  year={2004}
}
Consider the higher order nonlinear scalar differential equations (0.1) x(t) = −f(t, x(t), ..., y(t), ...y(2(n−1))(t)), 0 ≤ t ≤ 1 where f ∈ C([0, 1] × R+, R+), R+ = [0,∞) associated to the Lidstone boundary conditions (0.2) x(0) = 0 = x(1), (0.3) x(0) = 0 = x(1). Existence of a solution of boundary value Problems (BVP) (0.1)-(0.2) such that x(t) > 0, 0 < t < 1, i = 0, 1, ..., n− 1 are given, under superlinear or sublinear growth in f . Similarly existence for the BVP (0.1)-(0.3), under the same… CONTINUE READING

From This Paper

Topics from this paper.
3 Citations
10 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Triple Positive Solutions and Dependence on Higher Order Dirivatives

  • J. M. Davis, P. W. Eloe, J. Henderson
  • J. Math. Anal. Appl.237
  • 1999
1 Excerpt

On existence of positive solutions of nonlinear second order differential equations

  • W. C. Lian, F. H. Wong, C. C. Yeh
  • Proc. Amer. Math. Soc. 124
  • 1996

On the existence of positive solutions of ordinary differential equations

  • L. Erbe, H. Wang
  • Proc. Amer. Math. Soc. 120
  • 1994
1 Excerpt

Theory of singular boundary value problems

  • D. O’Regan
  • World Scientific, Singapore,
  • 1994

Focal Points of nonlinear Equations- a Dynamical Analysis

  • A. Edelson, P. K. Palamides
  • Rocky Mountain J. of Math. Vol 17 No 1
  • 1987

Green’s Functions and Disconjugacy

  • Z. Nehari
  • Arch. Rat. Mech. Anal. 62
  • 1976

Topology

  • K. Kuratowski
  • 1968
1 Excerpt

Stability and asymptotic behavior of differential equations

  • W. A. Copel
  • Heath & Co. Boston
  • 1965

Similar Papers

Loading similar papers…