Positive Definite and Semi-definite Splitting Methods for Non-hermitian Positive Definite Linear Systems

Abstract

In this paper, we further generalize the technique for constructing the normal (or positive definite) and skew-Hermitian splitting iteration method for solving large sparse nonHermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method converges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods. Mathematics subject classification: 65F10, 65F30, 65F50.

7 Figures and Tables

Cite this paper

@inproceedings{Huang2016PositiveDA, title={Positive Definite and Semi-definite Splitting Methods for Non-hermitian Positive Definite Linear Systems}, author={Na Huang and Changfeng Ma}, year={2016} }