Corpus ID: 119324363

Polynomiality of Grothendieck groups for finite general linear groups, Deligne-Lusztig characters, and injective unstable modules

@article{Perennou2019PolynomialityOG,
  title={Polynomiality of Grothendieck groups for finite general linear groups, Deligne-Lusztig characters, and injective unstable modules},
  author={H'elene P'erennou},
  journal={arXiv: Representation Theory},
  year={2019}
}
  • H'elene P'erennou
  • Published 2019
  • Mathematics
  • arXiv: Representation Theory
  • Let K 0 (Fp GLn(Fp)-proj) denote the Grothendieck group of finitely generated pro-jective Fp GLn(Fp)-modules. We show that the algebra C ⊗ n≥0 K 0 (Fp GLn(Fp)-proj) with multiplication given by induction functors, is a polynomial algebra. We explicit generators and their relation with Deligne-Lusztig characters. 

    References

    SHOWING 1-10 OF 15 REFERENCES
    Representations of Finite Classical Groups
    • 243
    • PDF
    Lannes' t functor on injective unstable modules and harish-chandra restriction
    • 2
    • PDF
    A proof of Schwartz's conjecture about the eigenvalues of Lannes' T-functor
    • 3
    Sur les espaces fonctionnels dont la source est le classifiant d’unp-groupe abélien élémentaire
    • 172
    • Highly Influential
    • PDF
    Lusztig. Representations of reductive groups over finite fields
    • Annals of Mathematics,
    • 1976
    On a conjecture of L. Schwartz about the eigenvalues of Lannes
    • T -functor. C. R. Maths,
    • 2015