Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems

@article{Song2015PolynomialPR,
  title={Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems},
  author={Lunji Song and Zhimin Zhang},
  journal={Discrete and Continuous Dynamical Systems-series B},
  year={2015},
  volume={20},
  pages={1405-1426}
}
A polynomial preserving recovery technique is applied to an over-penalized symmetric interior penalty method. The discontinuous Galerkin solution values are used to recover the gradient and to further construct an a posteriori error estimator in the energy norm. In addition, for uniform triangular meshes and mildly structured meshes satisfying the $\epsilon$-$\sigma$ condition, the method for the linear element is superconvergent under the regular pattern and under the chevron pattern… Expand
Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method
TLDR
By means of the averaging technique, it is proved the polynomial preserving recovery method for averaged solutions is superconvergent, satisfying similar estimates as those for conforming finite element methods. Expand
Polynomial preserving recovery for a class of weak Galerkin finite element methods
TLDR
The polynomial-preserving recover (PPR) postprocessing technique for the weak Galerkin (WG) finite element methods on triangular meshes involves a fine-tuning parameter in a stabilizer that improves the convergence order of the finiteelement methods. Expand
Symmetric interior penalty Galerkin approaches for two-dimensional parabolic interface problems with low regularity solutions
TLDR
The proposed SIPG approximations are shown to be unconditionally stable, and have nearly the optimal L 2 ( L 2 ) and L 1 ( H 1 ) error estimates, even when the regularities of the solutions are low on the whole domain. Expand
Convergence of a Second-Order Linearized BDF–IPDG for Nonlinear Parabolic Equations with Discontinuous Coefficients
We study the anti-symmetric interior over-penalized discontinuous Galerkin finite element methods for solving nonlinear parabolic interface problems with second-order backward difference formula forExpand
A Fully Discrete SIPG Method for Solving Two Classes of Vortex Dominated Flows
To simulate incompressible Navier–Stokes equation, a temporal splitting scheme in time and high-order symmetric interior penalty Galerkin (SIPG) method in space discretization are employed, while theExpand

References

SHOWING 1-10 OF 26 REFERENCES
Estimation of penalty parameters for symmetric interior penalty Galerkin methods
This paper presents computable lower bounds of the penalty parameters for stable and convergent symmetric interior penalty Galerkin methods. In particular, we derive the explicit dependence of theExpand
POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS
A polynomial preserving gradient recovery method is pro- posed and analyzed for bilinear element under quadrilateral meshes. It has been proven that the recovered gradient converges at a rate O(h 1+‰Expand
An Interior Penalty Finite Element Method with Discontinuous Elements
A new semidiscrete finite element method for the solution of second order nonlinear parabolic boundary value problems is formulated and analyzed. The test and trial spaces consist of discontinuousExpand
THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D
The Polynomial-Preserving Recovery (PPR) technique is extended to recover continuous gradients from $C^0$ finite element solutions of an arbitrary order in 2D and 3D problems. The stability of theExpand
Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations
A continuous interior penalty hp-finite element method that penalizes the jump of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for first-order andExpand
A New Finite Element Gradient Recovery Method: Superconvergence Property
TLDR
It is proved that the method is superconvergent for translation invariant finite element spaces of any order for uniform triangular meshes and ultraconvergent at element edge centers for the quadratic element under the regular pattern. Expand
Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio
A newly developed polynomial preserving gradient recovery technique is further studied. The results are twofold. First, error bounds for the recovered gradient are established on the Delaunay typeExpand
Superconvergence of quadratic finite elements on mildly structured grids
TLDR
For a large class of practically useful grids, the finite element solution u h is proven to be superclose to the inter-polant u I and as a result a postprocessing gradient recovery scheme can be devised. Expand
A weakly over-penalized symmetric interior penalty method for the biharmonic problem.
We study a weakly over-penalized symmetric interior penalt y method for the biharmonic problem that is intrinsically parallel. Botha priori error analysis anda posteriori error analysis are carriedExpand
An Elliptic Collocation-Finite Element Method with Interior Penalties
A discontinuous collocation-finite element method with interior penalties is proposed and analyzed for elliptic equations. The integral orthogonalities are motivated by the interior penaltyExpand
...
1
2
3
...