Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length

@article{Bournez2017PolynomialTC,
  title={Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length},
  author={O. Bournez and D. Graça and A. Pouly},
  journal={Journal of the ACM (JACM)},
  year={2017},
  volume={64},
  pages={1 - 76}
}
  • O. Bournez, D. Graça, A. Pouly
  • Published 2017
  • Mathematics, Computer Science
  • Journal of the ACM (JACM)
  • The outcomes of this article are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous elegant and simple characterization of P. We believe it is the first time complexity classes are characterized using only ordinary differential… CONTINUE READING
    18 Citations
    Continuous Ordinary Differential Equations and Infinite Time Turing Machines
    • PDF
    Notions of semicomputability in topological algebras over the reals
    • PDF
    Separations in query complexity using cheat sheets
    • 64
    • PDF

    References

    SHOWING 1-5 OF 5 REFERENCES
    Computable Analysis: an Introduction. Springer. Received September 2016; revised May 2016
    • Journal of the ACM,
    • 2000
    Computable Analysis: An Introduction. Springer. Received September 2016; revised July 2017
    • Journal of the ACM,
    • 2000
    Complexity Theory of Real Functions. Birkhaüser, Boston
    • Journal of the ACM,
    • 1991
    Mathematical Theory of the Di erential Analyser
    • Journal of Mathematics and Physics MIT
    • 1941
    Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete
    • A. Kawamura
    • Computer Science
    • Computational Complexity Conference
    • 2009
    • 6
    • Highly Influential
    • PDF