Corpus ID: 19186342

Polyhedral Voronoi Cells

@article{Voigt2010PolyhedralVC,
  title={Polyhedral Voronoi Cells},
  author={Ina Voigt and Stephan Weis},
  journal={arXiv: Mathematical Physics},
  year={2010}
}
  • Ina Voigt, Stephan Weis
  • Published 2010
  • Physics, Mathematics
  • arXiv: Mathematical Physics
  • Voronoi cells of a discrete set in Euclidean space are known as generalized polyhedra. We identify polyhedral cells of a discrete set through a direction cone. For an arbitrary set we distinguish polyhedral from non-polyhedral cells using inversion at a sphere and a theorem of semi-infinite linear programming. 

    Figures from this paper.

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 10 REFERENCES

    Linear Semi-Infinite Optimization

    VIEW 6 EXCERPTS
    HIGHLY INFLUENTIAL

    Convex Analysis

    VIEW 8 EXCERPTS
    HIGHLY INFLUENTIAL

    Linear semi - infinite optimization . Wiley Series in Mathematical Methods in Practice , Chichester

    • M. A. Goberna, M. A. López
    • 1998

    Spatial Tessellations

    • A. Okabe, B. Boots, K. Sugihara, S. N. Chiu
    • Concepts and Applications of Voronoi Diagrams, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester
    • 2000
    VIEW 1 EXCERPT

    The geometry of Minkowski spaces – a survey . II . Expo . Math . 22 ( 2 ) (

    • H. Martini, K. J. Swanepoel
    • 2004