Poisson vertex algebras in the theory of Hamiltonian equations
@article{Barakat2009PoissonVA, title={Poisson vertex algebras in the theory of Hamiltonian equations}, author={Ali Barakat and Alberto De Sole and Victor G. Kac}, journal={Japanese Journal of Mathematics}, year={2009}, volume={4}, pages={141-252} }
Abstract.We lay down the foundations of the theory of Poisson vertex algebras aimed at its applications to integrability of Hamiltonian partial differential equations. Such an equation is called integrable if it can be included in an infinite hierarchy of compatible Hamiltonian equations, which admit an infinite sequence of linearly independent integrals of motion in involution. The construction of a hierarchy and its integrals of motion is achieved by making use of the so called Lenard scheme…
129 Citations
The variational Poisson cohomology
- Mathematics
- 2013
It is well known that the validity of the so called Lenard–Magri scheme of integrability of a bi-Hamiltonian PDE can be established if one has some precise information on the corresponding 1st…
Representations of Lie Algebras and Partial Differential Equations
- Mathematics
- 2017
This book is mainly an exposition of the author's works and his joint works with his former students on explicit representations of finite-dimensional simple Lie algebras, related partial…
On Deformations of Multidimensional Poisson Brackets of Hydrodynamic Type
- Mathematics
- 2015
The theory of Poisson vertex algebras (PVAs) (Barakat et al. in Jpn J Math 4(2):141–252, 2009) is a good framework to treat Hamiltonian partial differential equations. A PVA consists of a pair…
Integrable Hamiltonian Hierarchies for Classical Lie Algebras
- Mathematics
- 2018
We prove that any classical affineW -algebraW(g, f ), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrableHamiltonian hierarchy of Lax type…
Cohomology of the Schrödinger–Virasoro conformal algebra
- Mathematics
- 2022
Lie conformal algebra, which was introduced by Kac in [6, 7], gives an axiomatic description of the operator product expansion (or rather its Fourier transform) of chiral fields in conformal field…
Classical Affine W -Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras
- Mathematics
- 2018
We prove that any classical affine W -algebra W(g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type…
Classical $${\mathcal{W}}$$W -Algebras and Generalized Drinfeld-Sokolov Bi-Hamiltonian Systems Within the Theory of Poisson Vertex Algebras
- Mathematics
- 2012
We describe of the generalized Drinfeld-Sokolov Hamiltonian reduction for the construction of classical $${\mathcal{W}}$$W -algebras within the framework of Poisson vertex algebras. In this context,…
Lie Conformal Algebra Cohomology and the Variational Complex
- Mathematics
- 2009
We find an interpretation of the complex of variational calculus in terms of the Lie conformal algebra cohomology theory. This leads to a better understanding of both theories. In particular, we give…
Higher-Order Dispersive Deformations of Multidimensional Poisson Brackets of Hydrodynamic Type
- MathematicsTheoretical and Mathematical Physics
- 2018
The theory of multidimensional Poisson vertex algebras provides a completely algebraic formalism for studying the Hamiltonian structure of partial differential equations for any number of dependent…
References
SHOWING 1-10 OF 23 REFERENCES
Cohomology of Conformal Algebras
- Mathematics
- 1999
Abstract:The notion of a conformal algebra encodes an axiomatic description of the operator product expansion of chiral fields in conformal field theory. On the other hand, it is an adequate tool for…
Finite vs affine W-algebras
- Mathematics
- 2006
Abstract.In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the λ-bracket. In Section 2 we…
Lie Conformal Algebra Cohomology and the Variational Complex
- Mathematics
- 2009
We find an interpretation of the complex of variational calculus in terms of the Lie conformal algebra cohomology theory. This leads to a better understanding of both theories. In particular, we give…
A Simple model of the integrable Hamiltonian equation
- Physics, Mathematics
- 1978
A method of analysis of the infinite‐dimensional Hamiltonian equations which avoids the introduction of the Backlund transformation or the use of the Lax equation is suggested. This analysis is based…
Soliton Equations and Hamiltonian Systems
- Mathematics
- 2003
Integrable Systems Generated by Linear Differential nth Order Operators Hamiltonian Structures Hamiltonian Structure of the GD Hierarchies Modified KdV and GD. The Kupershmidt-Wilson Theorem The KP…
Applications of lie groups to differential equations
- Mathematics
- 1986
1 Introduction to Lie Groups.- 1.1. Manifolds.- Change of Coordinates.- Maps Between Manifolds.- The Maximal Rank Condition.- Submanifolds.- Regular Submanifolds.- Implicit Submanifolds.- Curves and…
Vertex algebras for beginners
- Mathematics
- 1997
Preface. 1: Wightman axioms and vertex algebras. 1.1: Wightman axioms of a QFT. 1.2: d = 2 QFT and chiral algebras. 1.3: Definition of a vertex algebra. 1.4: Holomorphic vertex algebras. 2: Calculus…
Dirac Structures and Integrability of Nonlinear Evolution Equations
- Mathematics, Physics
- 1993
Algebraic theory of Dirac structures Nijenhuis operators and pairs of Dirac structures the complex of formal variational calculus local Hamiltonian operators local symplectic operators and evolution…
From Poisson algebras to Gerstenhaber algebras
- Mathematics
- 1996
© Annales de l’institut Fourier, 1996, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions…