# Poisson-Dirichlet asymptotics in condensing particle systems

@inproceedings{Chleboun2021PoissonDirichletAI, title={Poisson-Dirichlet asymptotics in condensing particle systems}, author={P. Chleboun and S. Gabriel and S. Grosskinsky}, year={2021} }

We study measures on random partitions, arising from condensing stochastic particle systems with stationary product distributions. We provide fairly general conditions on the stationary weights, which lead to PoissonDirichlet statistics of the condensed phase in the thermodynamic limit. The Poisson-Dirichlet distribution is known to be the unique reversible measure of split-merge dynamics for random partitions, which we use to characterize the limit law. We also establish concentration results… Expand

#### References

SHOWING 1-10 OF 71 REFERENCES

Condensation in Stochastic Particle Systems with Stationary Product Measures

- Physics, Mathematics
- 2014

We study stochastic particle systems with stationary product measures that exhibit a condensation transition due to particle interactions or spatial inhomogeneities. We review previous work on the… Expand

Structure of the Condensed Phase in the Inclusion Process

- Mathematics, Physics
- 2019

We establish a complete picture of condensation in the inclusion process in the thermodynamic limit with vanishing diffusion, covering all scaling regimes of the diffusion parameter and including… Expand

Condensation in the Zero Range Process: Stationary and Dynamical Properties

- Mathematics, Physics
- 2003

The zero range process is of particular importance as a generic model for domain wall dynamics of one-dimensional systems far from equilibrium. We study this process in one dimension with rates which… Expand

The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations

- Mathematics
- 2003

We consider a Markov chain on the space of (countable) partitions of the interval [0,1], obtained first by size-biased sampling twice (allowing repetitions) and then merging the parts (if the sampled… Expand

Asymptotics of Certain Coagulation-Fragmentation Processes and Invariant Poisson-Dirichlet Measures

- Mathematics
- 2001

We consider Markov chains on the space of (countable) partitions of the interval $[0,1]$, obtained first by size biased sampling twice (allowing repetitions) and then merging the parts with… Expand

Lattice Permutations and Poisson-Dirichlet Distribution of Cycle Lengths

- Mathematics, Physics
- 2012

We study random spatial permutations on ℤ3 where each jump x↦π(x) is penalized by a factor $\mathrm{e}^{-T\| x-\pi (x)\|^{2}}$. The system is known to exhibit a phase transition for low enough T… Expand

Duality for Stochastic Models of Transport

- Mathematics, Physics
- 2013

We study three classes of continuous time Markov processes (inclusion process, exclusion process, independent walkers) and a family of interacting diffusions (Brownian energy process). For each model… Expand

Split-and-Merge in Stationary Random Stirring on Lattice Torus

- Mathematics, Physics
- 2019

We show that in any dimension $d\ge1$, the cycle-length process of stationary random stirring (or, random interchange) on the lattice torus converges to the canonical Markovian split-and-merge… Expand

Thermodynamic limit for the invariant measures in supercritical zero range processes

- Mathematics, Physics
- 2009

We prove a strong form of the equivalence of ensembles for the invariant measures of zero range processes conditioned to a supercritical density of particles. It is known that in this case there is a… Expand

Condensation for random variables conditioned by the value of their sum

- Mathematics, Physics
- 2019

We revisit the problem of condensation for independent, identically distributed random variables with a power-law tail, conditioned by the value of their sum. For large values of the sum, and for a… Expand