Poisson (co)homology and Isolated Singularities

  title={Poisson (co)homology and Isolated Singularities},
  author={ANNE PICHEREAU},
  • Published 2006
To each polynomial φ ∈ F[x, y, z] is associated a Poisson structure on F, a surface and a Poisson structure on this surface. When φ is weight homogeneous with an isolated singularity, we determine the Poisson cohomology and homology of the two Poisson varieties obtained. 
Highly Cited
This paper has 18 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.
15 Citations
22 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 22 references

Poisson structures and their normal forms, volume

  • Jean-Paul Dufour, Nguyen Tien Zung
  • Progress in Mathematics. Birkhuser,
  • 2005
2 Excerpts

Poisson cohomology of the affine plane

  • Claude Roger, Pol Vanhaecke
  • J. Algebra,
  • 2002
2 Excerpts

Integrable systems in the realm of algebraic geometry, volume 1638 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 2001. POISSON (CO)HOMOLOGY AND ISOLATED SINGULARITIES

  • Pol Vanhaecke
  • 2001
1 Excerpt

Using algebraic geometry, volume 185 of Graduate Texts in Mathematics

  • David Cox, John Little, Donal O’Shea
  • 1998
1 Excerpt

Comparaison de l’homologie de Hochschild et de l’homologie de Poisson pour une déformation des surfaces de Klein. In Algebra and operator theory (Tashkent

  • Jacques Alev, Thierry Lambre
  • Kluwer Acad. Publ., Dordrecht,
  • 1997
1 Excerpt

Poisson cohomology of plane quadratic Poisson structures

  • Nobutada Nakanishi
  • Publ. Res. Inst. Math. Sci.,
  • 1997

Quadratisation de certaines structures de Poisson

  • Abdeljalil Haraki
  • J. London Math. Soc. (2),
  • 1997
1 Excerpt

Similar Papers

Loading similar papers…