Platonic solids and high genus covers of lattice surfaces.

@article{Athreya2018PlatonicSA,
  title={Platonic solids and high genus covers of lattice surfaces.},
  author={Jayadev S. Athreya and David Aulicino and William P. Hooper},
  journal={arXiv: Geometric Topology},
  year={2018}
}
We study the translation surfaces obtained by considering the unfoldings of the surfaces of Platonic solids. We show that they are all lattice surfaces and we compute the topology of the associated Teichmuller curves. Using an algorithm that can be used generally to compute Teichmuller curves of translation covers of primitive lattice surfaces, we show that the Teichmuller curve of the unfolded dodecahedron has genus 131 with 19 cone singularities and 362 cusps. We provide both theoretical and… Expand
A new approach to the automorphism group of a platonic surface
We borrow a classical construction from the study of rational billiards in dynamical systems known as the "unfolding construction" and show that it can be used to study the automorphism group of aExpand
Translation Covers of Platonic Surfaces
We study translation covers of several triply periodic polyhedral surfaces that are intrinsically platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for countingExpand
You can find geodesic paths in triangle meshes by just flipping edges
TLDR
This paper introduces a new approach to computing geodesics on polyhedral surfaces to iteratively perform edge flips, in the same spirit as the classic Delaunay flip algorithm, and demonstrates that the method is both robust and efficient, even for low-quality triangulations. Expand
Billiard Trajectories in Regular Polygons and Geodesics on Regular Polyhedra
This article is devoted to the geometry of billiard trajectories in a regular polygon and geodesics on the surface of a regular polyhedron. Main results are formulated as conjectures based on ampleExpand
Translation covers of some triply periodic Platonic surfaces
We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for countingExpand
Higher Dimensional Spiral Delone Sets.
A Delone set in $\mathbb{R}^n$ is a set such that (a) the distance between any two of its points is uniformly bounded below by a strictly positive constant and such that (b) the distance from anyExpand
Strata of $p$-Origamis
Given a two-generated group of prime-power order, we investigate the singularities of origamis whose deck group acts transitively and is isomorphic to the given group. Geometric and group-theoreticExpand
The Farthest Point Map on the Regular Octahedron
On any compact space one can consider the map which sends a point to the set of points farthest from this point. In nice cases, there is just a single point farthest from a given point and so byExpand

References

SHOWING 1-10 OF 38 REFERENCES
Grid graphs and lattice surfaces
First, we apply Thurston's construction of pseudo-Anosov homeomorphisms to grid graphs and obtain translation surfaces whose Veech groups are commensurable to $(m,n,\infty)$ triangle groups. TheseExpand
A Discrete Laplace–Beltrami Operator for Simplicial Surfaces
TLDR
Using Rippa's Theorem, it is shown that, as claimed, Musin’s harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces. Expand
Affine mappings of translation surfaces: geometry and arithmetic
1. Introduction. Translation surfaces naturally arise in the study of billiards in rational polygons (see [ZKa]). To any such polygon P , there corresponds a unique translation surface, S = S(P),Expand
Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve
Periodic points are points on Veech surfaces, whose orbit under the group of affine diffeomorphisms is finite. We characterize those points as being torsion points if the Veech surfaces is suitablyExpand
Veech Groups and Translation Coverings
A translation surface is obtained by taking plane polygons and gluing their edges by translations. We ask which subgroups of the Veech group of a primitive translation surface can be realised via aExpand
Geodesics on Regular Polyhedra with Endpoints at the Vertices
In a recent work of Davis et al. (2016), the authors consider geodesics on regular polyhedra which begin and end at vertices (and do not touch other vertices). The cases of regular tetrahedra andExpand
Invariants of translation surfaces
We definite invariants of translation surfaces which refine Veech groups. These aid in exact determination of Veech groups. We give examples where two surfaces of isomorphic Veech group cannot evenExpand
Everything is illuminated
We study geometrical properties of translation surfaces: the finite blocking property, bounded blocking property, and illumination properties. These are elementary properties which can be fruitfullyExpand
A Primer on Mapping Class Groups (Pms-49)
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as manyExpand
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards
There exists a Teichmuller discΔ n containing the Riemann surface ofy2+x n =1, in the genus [n−1/2] Teichmuller space, such that the stabilizer ofΔ n in the mapping class group has a fundamentalExpand
...
1
2
3
4
...