Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications.


This article is focused on the optical generation and detection of photothermal vapor bubbles around plasmonic nanoparticles. We report physical properties of such plasmonic nanobubbles and their biomedical applications as cellular probes. Our experimental studies of gold nanoparticle-generated photothermal bubbles demonstrated the selectivity of photothermal bubble generation, amplification of optical scattering and thermal insulation effect, all realized at the nanoscale. The generation and imaging of photothermal bubbles in living cells (leukemia and carcinoma culture and primary cancerous cells), and tissues (atherosclerotic plaque and solid tumor in animal) demonstrated a noninvasive highly sensitive imaging of target cells by small photothermal bubbles and a selective mechanical, nonthermal damage to the individual target cells by bigger photothermal bubbles due to a rapid disruption of cellular membranes. The analysis of the plasmonic nanobubbles suggests them as theranostic probes, which can be tuned and optically guided at cell level from diagnosis to delivery and therapy during one fast process.

DOI: 10.2217/nnm.09.59

Cite this paper

@article{Lapotko2009PlasmonicNP, title={Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications.}, author={Dmitri O. Lapotko}, journal={Nanomedicine}, year={2009}, volume={4 7}, pages={813-45} }