Plane Formation by Synchronous Mobile Robots in the Three Dimensional Euclidean Space


Creating a swarm of mobile computing entities, frequently called robots, agents, or sensor nodes, with self-organization ability is a contemporary challenge in distributed computing. Motivated by this, we investigate the <i>plane formation problem</i> that requires a swarm of robots moving in the three-dimensional Euclidean space to land on a common plane. The robots are fully synchronous and endowed with visual perception. But they do not have identifiers, nor access to the global coordinate system, nor any means of explicit communication with each other. Though there are plenty of results on the agreement problem for robots in the two-dimensional plane, for example, the point formation problem, the pattern formation problem, and so on, this is the first result for robots in the <i>three-dimensional space</i>. This article presents a necessary and sufficient condition for fully synchronous robots to solve the plane formation problem that does not depend on obliviousness, i.e., the availability of local memory at robots. An implication of the result is somewhat counter-intuitive: The robots <i>cannot</i> form a plane from most of the semi-regular polyhedra, while they <i>can</i> form a plane from every regular polyhedron (except a regular icosahedron), whose symmetry is usually considered to be higher than any semi-regular polyhedron.

DOI: 10.1145/3060272

Extracted Key Phrases

23 Figures and Tables

Unfortunately, ACM prohibits us from displaying non-influential references for this paper.

To see the full reference list, please visit