- Published 2000

Knowledge in some fields like Medicine, Science and Engineering is very dynamic because of the continuous contributions of research and development. Therefore, it would be very useful to design knowledge-based systems capable to be adjusted like human cognition and thinking, according to knowledge dynamics. Aiming at this objective, a more generalized fuzzy Petri net model for expert systems is proposed, which is called AFPN (Adaptive Fuzzy Petri Nets). This model has both the features of a fuzzy Petri net and the learning ability of a neural network. Being trained, an AFPN model can be used for dynamic knowledge representation and inference. After the introduction of the AFPN model, the reasoning algorithm and the weight learning algorithm are developed. An example is included as an illustration. q 2000 Published by Elsevier Science Ltd.

@inproceedings{Li2000PiiS,
title={Pii: S0957-4174(00)00036-1},
author={Xiaoli Li and Felipe Lara-Rosano},
year={2000}
}