Piecewise Polynomial Collocation for Boundary Integral Equations

  title={Piecewise Polynomial Collocation for Boundary Integral Equations},
  author={Kendall E. Atkinson and David Da-Kwun Chien},
  journal={SIAM J. Scientific Computing},
This paper considers the numerical solution of boundary integral equations of the second kind, for Laplace's equation u = 0 on connected regions D in R 3 with boundary S. T h e boundary S is allowed to be smooth or piecewise smoothh and we l e t f K j 1 K N g be a triangulation o f S. T h e n umerical method is collocation with approximations w h i c h are piecewise quadratic in the parametrization variables, leading to a numerical solution u N : Superconvergence results for u N are given for S… CONTINUE READING


Publications referenced by this paper.
Showing 1-9 of 9 references

Iterative solution of linear systems arising from the Nystr  ommethod for the doublelayerpotential equation over curves with corners , Mathematical Methods in the Appl

  • J.
  • Radon  Uber die Randwertaufgaben beim…
  • 1991

Wendland Some examples concerning applicability of the FredholmRadonmethod in potential theory , Aplicace Matem

  • W.
  • 1989

Scott An analysis of quadrature errors in secondkind boundary integralequations

  • L.
  • SIAM J . Numer . Anal .
  • 1988

Elschner The double - layer potential operator over polyhedral domains II : Spline Galerkinmethods , Math

  • J.
  • Methods in the Applied Sciences
  • 1982

Chandler High order methods for linear functionals of solutions of secondkind integral equations

  • G.
  • SIAM J . Numer . Anal .
  • 1979

Graham Iterative solution of linear systems arising from the boundary integralmethod

  • I.
  • SIAM J . Scienti c & Statistical Computing
  • 1976

Rathsfeld On the stability of quadrature methods for the double layer potential equationover the boundary of a polyhedron

  • A.
  • 1970

Wendland On numerical cubatures of singular surface integrals in boundary element methods

  • W.
  • Numerische Math .
  • 1919

Duffy Quadrature over a pyramid or cube of integrands with a singularity at the vertex

  • M.
  • SIAM J . Numer . Anal .

Similar Papers

Loading similar papers…