Phenomics: the next challenge

@article{Houle2010PhenomicsTN,
  title={Phenomics: the next challenge},
  author={D. Houle and D. Govindaraju and S. Omholt},
  journal={Nature Reviews Genetics},
  year={2010},
  volume={11},
  pages={855-866}
}
A key goal of biology is to understand phenotypic characteristics, such as health, disease and evolutionary fitness. Phenotypic variation is produced through a complex web of interactions between genotype and environment, and such a 'genotype–phenotype' map is inaccessible without the detailed phenotypic data that allow these interactions to be studied. Despite this need, our ability to characterize phenomes — the full set of phenotypes of an individual — lags behind our ability to characterize… Expand

Figures, Tables, and Topics from this paper

Bridging Genomics and Phenomics
TLDR
Application of genome-wide association studies and analogous methodologies and incorporation of multiple omics data begin to unravel the contribution of genetic variation to phenotypic diversity. Expand
Metabotyping as a Stopover in Genome-to-Phenome Mapping
TLDR
This study proposes a two-step procedure in bridging the genome to phenome gap where external phenotypes are viewed as emergent properties of internal phenotypes, such as molecular profiles, in interaction with the environment. Expand
Finding Our Way Through Phenotypes
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensusbased,Expand
Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
TLDR
Armed with this interdisciplinary and multidimensional phenomics approach, plant physiology, non-invasive phenotyping, and functional genomics will complement each other, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. Expand
Perspective Finding Our Way through Phenotypes
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensusbased,Expand
Plant Phenomics: Bridging the gap between Plant Physiology and Genetics
As area of biology concern with measurement of phenomes, the physical and biochemical traits of plants ,phenomics allow to perform pharmaceutical research and it also used in functional genomics andExpand
Systems genetics approaches to understand complex traits
TLDR
Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Expand
Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast.
TLDR
It is shown how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. Expand
The detection and characterization of pleiotropy: discovery, progress, and promise
TLDR
Recent studies exploring the relationships between genetic loci and more than one phenotype are described and how stepping beyond the analysis of a single phenotype leads to a deeper understanding of complex genetic architecture is discussed. Expand
Phenome-Wide Association Studies: Embracing Complexity for Discovery
TLDR
This work describes how incorporating greater complexity into analyses through the use of additional phenotypic data and widespread deployment of phenome-wide association studies may provide new insights into genetic factors influencing diseases, traits, and pharmacological response. Expand
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 157 REFERENCES
The Human Phenome Project
TLDR
This work proposes an international effort to create phenomic databases, that is, comprehensive assemblages of systematically collected phenotypic information, and to develop new approaches for analyzing such Phenotypic data. Expand
Phenomics: the systematic study of phenotypes on a genome-wide scale
TLDR
There is promise that systematic new knowledge bases will help fulfill the promise of personalized medicine and the rational diagnosis and treatment of neuropsychiatric syndromes as the transdiscipline of phenomics matures and work is extended to large-scale international collaborations. Expand
Genetical genomics: the added value from segregation.
TLDR
This work proposes a merger of genomics and genetics into 'genetical genomics', which involves expression profiling and marker-based fingerprinting of each individual of a segregating population, and exploits all the statistical tools used in the analysis of quantitative trait loci. Expand
Toward Metabolic Phenomics: Analysis of Genomic Data Using Flux Balances
TLDR
How the metabolic characteristics of annotated small genomes can be analyzed using flux balance analysis (FBA) is illustrated to show how FBA can be used to study the capabilities of this strain. Expand
Genomic patterns of pleiotropy and the evolution of complexity
TLDR
Analyzing phenotypes of large numbers of yeast, nematode, and mouse mutants, it is shown that the fraction of traits altered appreciably by the deletion of a gene is minute for most genes and the gene–trait relationship is highly modular and the observed scaling exponent falls in a narrow range that maximizes the optimal complexity. Expand
Toward a Molecular Understanding of Pleiotropy
TLDR
Using functional genomic data of the yeast Saccharomyces cerevisiae, it is shown that highly pleiotropic genes participate in more biological processes through distribution of the protein products in more cellular components and involvement in more protein–protein interactions. Expand
Studying complex biological systems using multifactorial perturbation
  • R. Jansen
  • Biology, Medicine
  • Nature Reviews Genetics
  • 2003
TLDR
It is argued that multifactorial experimentation would allow the study of many more biologically relevant questions in parallel at the same or lower cost. Expand
Gene-to-phenotype models and complex trait genetics
TLDR
A gene-to-phenotype (G→P) modelling framework for quantitative genetics that explicitly deals with the context-dependent gene effects that are attributed to genes functioning within networks, i.e. epistasis, gene × environment interactions, and pleiotropy is developed. Expand
5 – Characters as the Units of Evolutionary Change
TLDR
Two major complicating features of the genetic system are that it is polygenic and pleiotropic; it tells us that the fitness of genotypes at each locus will be difficult to predict, as it will depend on its effects on many phenotypes. Expand
High-dimensional and large-scale phenotyping of yeast mutants.
  • Y. Ohya, J. Sese, +22 authors S. Morishita
  • Biology, Medicine
  • Proceedings of the National Academy of Sciences of the United States of America
  • 2005
TLDR
The high-dimensional phenotypic analysis of defined yeast mutant strains provides another step toward attributing gene function to all of the genes in the yeast genome. Expand
...
1
2
3
4
5
...