Phase Slips and the Eckhaus Instability

@inproceedings{Eckmann1995PhaseSA,
  title={Phase Slips and the Eckhaus Instability},
  author={J Eckmann and Th. Gallay and C. Eugene Wayne},
  year={1995}
}
We consider the Ginzburg-Landau equation, @ t u = @ 2 x u+u?ujuj 2 , with complex amplitude u(x; t). We first analyze the phenomenon of phase slips as a consequence of the local shape of u. We next prove a global theorem about evolution from an Eckhaus unstable state, all the way to the limiting stable finite state, for periodic perturbations of Eckhaus unstable periodic initial data. Equipped with these results, we proceed to prove the corresponding phenomena for the fourth order Swift… CONTINUE READING
4 Citations
8 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-8 of 8 references

Error estimates for the Ginzburg-Landau equation

  • G. Schneider
  • J. Appl. Math. Phys. (ZAMP)
  • 1994

Existence et stabilité des fronts dans l’équation de Ginzburg-Landau à une dimension

  • Ga Gallay, Th
  • Thèse de l’Université de Genève
  • 1994

On the validity of Ginzburg-Landau’s equation

  • A. vH van Harten
  • J. Nonlin. Science
  • 1991

Eckmann: Instabilities and Fronts in Extended Systems, Princeton University

  • P. Collet, J.-P
  • 1990

Asymptotic Behavior of Dissipative Systems, AMS Mathematical surveys and monographs

  • J. K. Ha Hale
  • Providence
  • 1988

Infinite-Dimensional Systems in Mechanics and Physics

  • R. Te Temam
  • 1988

The zero set of a solution of a parabolic equation

  • S. Angenent
  • J. reine angew. Math. 390,
  • 1988

Borwein: Pi and the algebraic-geometric mean: a study in analytic number theory and computational complexity

  • B. Borwein
  • 1987

Similar Papers

Loading similar papers…