Permutations on the Random Permutation
@article{Linman2014PermutationsOT, title={Permutations on the Random Permutation}, author={Julie Linman and Michael Pinsker}, journal={Electron. J. Comb.}, year={2014}, volume={22}, pages={2} }
The random permutation is the Fraisse limit of the class of finite structures with two linear orders. Answering a problem stated by Peter Cameron in 2002, we use a recent Ramsey-theoretic technique to show that there exist precisely 39 closed supergroups of the automorphism group of the random permutation, and thereby expose all symmetries of this structure. Equivalently, we classify all structures which have a first-order definition in the random permutation.
16 Citations
Permutation groups on countable vector spaces over prime fields
- Mathematics
- 2021
We describe all closed permutation groups which act on the set of vectors of a countable vector space V over a prime field of odd order and which contain all automorphisms of V. In particular, we…
Automorphism groups of linearly ordered homogeneous structures
- Mathematics
- 2020
We apply results proved in [Li19] to the linear order expansions of non-trivial free homogeneous structures and the universal n-linear order for $n\geq 2$, and prove the simplicity of their…
The universal homogeneous binary tree
- MathematicsJ. Log. Comput.
- 2018
This work classifies the model-complete cores of the reducts of S2, that is, the relational structures with the same domain as S2 all of whose relations are first-order definable in S2.
The Universal Homogenous Binary
- Mathematics
- 2019
A partial order is called semilinear iff the upper bounds of each element are linearly ordered and any two elements have a common upper bound. There exists, up to isomorphism, a unique countable…
The 42 reducts of the random ordered graph
- Mathematics, Computer Science
- 2013
The reducts of the random ordered graph up to first‐order interdefinability are determined.
Canonical Functions: a proof via topological dynamics
- MathematicsContributions Discret. Math.
- 2021
A proof of the existence of canonical functions in certain sets using topological dynamics, providing a shorter alternative to the original combinatorial argument and presenting equivalent algebraic characterisations of canonicity.
Clones and homogeneous structures
- Mathematics
- 2017
A structure A is called homogeneous, if every isomorphism between its finitely generated substructures extends to an automorphism of A. In this thesis we are studying homogeneous structures with…
Ramsey classes: examples and constructions
- MathematicsSurveys in Combinatorics
- 2015
This article is concerned with classes of relational structures that are closed under taking substructures and isomorphism, that have the joint embedding property, and that furthermore have the…
NIP ω$\omega$ ‐categorical structures: The rank 1 case
- MathematicsProceedings of the London Mathematical Society
- 2022
We classify primitive, rank 1, ω$\omega$ ‐categorical structures having polynomially many types over finite sets. We show that there are only finitely many such structures with a fixed number of…
Complexity of Infinite-Domain Constraint Satisfaction
- Computer Science
- 2021
This monograph presents a self-contained introduction to the universal-algebraic approach to complexity classification, treating both finite and infinite-domain CSPs.
References
SHOWING 1-10 OF 23 REFERENCES
Ramsey Property of Posets and Related Structures
- Mathematics
- 2011
We study several classes of
nite posets with linear ordering. We examine these classes according to the Ramsey and the ordering property. As application we give several new extremely amenable groups…
Homogeneous Permutations
- MathematicsElectron. J. Comb.
- 2002
The paper discusses infinite generalisations of permutations, and the connection with Fra ̈ ıssé’s theory of countable homogeneous structures, and states a few open problems.
Minimal functions on the random graph
- Mathematics, Computer Science
- 2010
The theorem is obtained by proving a Ramsey-type theorem for colorings of tuples in finite powers of the random graph, and by applying this to find regular patterns in the behavior of any function on therandom graph.
The 42 reducts of the random ordered graph
- Mathematics, Computer Science
- 2013
The reducts of the random ordered graph up to first‐order interdefinability are determined.
Reducts of Ramsey structures
- MathematicsAMS-ASL Joint Special Session
- 2009
A survey of results in model theory and theoretical computer science obtained recently by the authors in this context, which approaches the problem of classifying the reducts of countably infinite ordered homogeneous Ramsey structures in a finite language, and certain decidability questions connected with such reduCTs.
Reducts of the random graph
- MathematicsJournal of Symbolic Logic
- 1991
Let Γ be the unique (up to isomorphism) countable graph with the following property: (*) Given any two finite disjoint subsets U and V of Γ, there exists a vertex z ∈ Γ joined to every vertex in U…
The 116 reducts of (Q, <, a)
- MathematicsJ. Symb. Log.
- 2008
This article aims to classify those reducts of expansions of (Q, <) by unary predicates which eliminate quantifiers, and in particular to show that, up to interdefinability, there are only finitely…