Period stabilization in the Busse–Heikes model of the Küppers–Lortz instability

@inproceedings{Toral2000PeriodSI,
  title={Period stabilization in the Busse–Heikes model of the K{\"u}ppers–Lortz instability},
  author={Ra{\'u}l Toral and Maxi San Miguel and Rafael Gallego},
  year={2000}
}
The Busse–Heikes dynamical model is described in terms of relaxational and non-relaxational dynamics. Within this dynamical picture a diverging alternating period is calculated in a reduced dynamics given by a time-dependent Hamiltonian with decreasing energy. A mean period is calculated which results from noise stabilization of a mean energy. The consideration of spatial-dependent amplitudes leads to vertex formation. The competition of front motion around the vertices and the Kuppers–Lortz… CONTINUE READING

Citations

Publications citing this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 20 REFERENCES

Phys

Y. Ponty, T. Passot, P. L. Sulem
  • Rev. Lett. 79
  • 1997
VIEW 11 EXCERPTS
HIGHLY INFLUENTIAL

Math

R. May, W. J. Leonard, SIAM J. Appl
  • 29
  • 1975
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

in: E

M. San Miguel, R. Toral
  • Tirapegui, W. Zeller (Eds.), Instabilities and Nonequilibrium Structures, VI, Kluwer, Dordrecht
  • 1999
VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

Comput

R. Gallego, M. San Miguel, R. Toral
  • Phys. Commun. 121–122
  • 1999
VIEW 1 EXCERPT

E

R. Montagne
  • Hern andez-Garc a, M. San Miguel, Physica D 96
  • 1996

E

M. San Miguel, R. Montagne, A. Amengual
  • Hern andez-Garc a, in: E. Tirapegui, W. Zeller (Eds.), Instabilities and Nonequilibrium Structures V, Kluwer, Dordrecht
  • 1996

Phys

R. Graham
  • Rev. Lett. 76
  • 1996

Phys

L. Fracheborug, P. L. Krapivsky, E. Ben-Naim
  • Rev. E 54
  • 1996

Phys

M. Neufeld, R. Friedrich
  • Rev. E 51
  • 1995

Phys

Y. Hu, R. E. Ecke, G. Ahlers
  • Rev. Lett. 74
  • 1995