# Perfect quantum state transfer using Hadamard diagonalizable graphs

@article{Johnston2017PerfectQS, title={Perfect quantum state transfer using Hadamard diagonalizable graphs}, author={Nathaniel Johnston and Steve Kirkland and Sarah Plosker and Rebecca Storey and Xiaohong Zhang}, journal={Linear Algebra and its Applications}, year={2017}, volume={531}, pages={375-398} }

Abstract Quantum state transfer within a quantum computer can be achieved by using a network of qubits, and such a network can be modelled mathematically by a graph. Here, we focus on the corresponding Laplacian matrix, and those graphs for which the Laplacian can be diagonalized by a Hadamard matrix. We give a simple eigenvalue characterization for when such a graph has perfect state transfer at time π / 2 ; this characterization allows one to choose the correct eigenvalues to build graphs… Expand

#### Figures from this paper

#### 11 Citations

Combinatorial and algebraic aspects of quantum state transfer

- Mathematics
- 2019

Reliably transferring a quantum state from one location to another, as well as generating entangled states, are important tasks to achieve in quantum spin systems. The fidelity or probability of… Expand

Perfect quantum state transfer in weighted paths with potentials (loops) using orthogonal polynomials

- Mathematics, Physics
- 2017

ABSTRACT A simple method for transmitting quantum states within a quantum computer is via a quantum spin chain – that is, a path on n vertices. Unweighted paths are of limited use, and so a natural… Expand

Pretty good state transfer on Cayley graphs over dihedral groups

- Computer Science, Mathematics
- Discret. Math.
- 2020

If n is a power of 2, then Cay ( D n, S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided and it is shown that this is basically the only case for a non-integral Cayley graph Cay (D n , S ) to have PGST. Expand

Perfect state transfer on Cayley graphs over dihedral groups

- Mathematics
- 2019

Recently, there are extensive studies on perfect state transfer on graphs due to their significant applications in quantum information processing and quantum computations. However, most of the graphs… Expand

Perfect State Transfer on Abelian Cayley Graphs

- Mathematics, Physics
- 2017

Perfect state transfer (PST) has great significance due to its applications in quantum information processing and quantum computation. In this paper we present a characterization on connected simple… Expand

Switching and partially switching the hypercube while maintaining perfect state transfer

- Mathematics, Physics
- Quantum Inf. Comput.
- 2019

These switched and partially switched perturbations of the $n$-cube exhibit perfect state transfer (PST, a desirable property in quantum information theory) between certain pairs of vertices. Expand

Weakly Hadamard diagonalizable graphs

- Mathematics
- 2021

Abstract A matrix is called weakly Hadamard if its entries are from { 0 , − 1 , 1 } and its non-consecutive columns (with some ordering) are orthogonal. Unlike Hadamard matrices, there is a weakly… Expand

Pretty good state transfer on Cayley graphs over semi-dihedral groups

- Mathematics
- 2021

Let Γ be a graph with adjacency matrix A. The transition matrix of Γ corresponding to A is defined by H(t):=exp(−ιtA), where ι=−1 and t∈R. The graph is said to exhibit pretty good state transfer b...

Transport in Unsteady Flows: from Deterministic Structures to Stochastic Models and Back Again (17w5048)

- 2017

Infinite-Dimensional Systems Infinite-dimensional system theory is an area where the goal is to axiomatize certain properties in control theory within the context of infinite-dimensional theory with… Expand

Hadamard diagonalizable graphs of order at most 36

- Mathematics
- 2020

If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with entries $\pm1$, then the matrix formed by taking the columns as the eigenvectors is a Hadamard matrix and the graph… Expand

#### References

SHOWING 1-10 OF 25 REFERENCES

On quantum perfect state transfer in weighted join graphs

- Mathematics, Physics
- 2009

We study perfect state transfer on quantum networks represented by weighted graphs. Our focus is on graphs constructed from the join and related graph operators. Some specific results we prove… Expand

Characterization of quantum circulant networks having perfect state transfer

- Physics, Computer Science
- Quantum Inf. Process.
- 2013

This paper answers the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer and calculates perfect quantum communication distance (distance between vertices where PST occurs) and describes the spectra of integralcirculant graphs having PST. Expand

Perfect Transfer of Arbitrary States in Quantum Spin Networks

- Physics
- 2005

We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary… Expand

Perfect state transfer, integral circulants, and join of graphs

- Computer Science, Physics
- Quantum Inf. Comput.
- 2010

It is shown that the integral circulant ICGn (2, n/2b) has perfect state transfer, where b ∈ {1, 2},n is a multiple of 16 and Q is a subset of the odd divisors of n. Expand

Perfect state transfer in products and covers of graphs

- Mathematics, Physics
- 2015

A continuous-time quantum walk on a graph is represented by the complex matrix , where is the adjacency matrix of and is a non-negative time. If the graph models a network of interacting qubits,… Expand

Basics of perfect communication through quantum networks

- Mathematics, Physics
- 2011

Perfect transfer of a quantum state through a one-dimensional chain is now well understood, allowing one not only to decide whether a fixed Hamiltonian achieves perfect transfer but to design a… Expand

Perfect state transfer on signed graphs

- Computer Science, Mathematics
- Quantum Inf. Comput.
- 2013

The aim is to show that negative edges are useful for perfect state transfer, and it is proved that a signed complete graph has perfect stateTransfer if its positive subgraph is a regular graph withperfect state transfer and its negative sub graph is periodic. Expand

Sensitivity analysis of perfect state transfer in quantum spin networks

- Mathematics
- 2015

Abstract For a weighted graph G with adjacency matrix A , let U ( t ) = e i t A . For indices s , r , the fidelity of transfer at time t is p ( t ) = | u ( t ) s , r | 2 , and there is perfect state… Expand

Perfect state transfer in quantum spin networks.

- Physics, Medicine
- Physical review letters
- 2004

It is shown that 2log3N is the maximal perfect communication distance for hypercube geometries if one allows fixed but different couplings between the qubits, then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. Expand

Perfect state transfer in Laplacian quantum walk

- Mathematics, Physics
- 2014

For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix $$U(t) = \exp (-itM)$$U(t)=exp(-itM), where t varies over the… Expand