# Perfect parallelepipeds exist

@article{Sawyer2009PerfectPE, title={Perfect parallelepipeds exist}, author={Jorge F. Sawyer and Clifford A. Reiter}, journal={Math. Comput.}, year={2009}, volume={80}, pages={1037-1040} }

There are parallelepipeds with edge lengths, face diagonal lengths and body diagonal lengths that are all positive integers. In particular, there is a parallelepiped with edge lengths 271, 106, 103, minor face diagonal lengths 101, 266, 255, major face diagonal lengths 183, 312, 323, and body diagonal lengths 374, 300, 278, 272. Focused brute force searches give dozens of primitive perfect parallelepipeds. Examples include parallellepipeds with up to two rectangular faces.

## 11 Citations

### An infinite family of perfect parallelepipeds

- MathematicsMath. Comput.
- 2014

It is proved the existence of an infinite family of dissimilar perfect parallelepipeds with two nonparallel rectangular faces that can be obtained of this form with the angle of the nonrectangular face arbitrarily close to 90◦.

### An Infinite Family of Perfect Parallelpipeds ( preprint )

- Mathematics
- 2013

A perfect parallelepiped has edges, face diagonals, and body diagonals all of integer length. We prove the existence of an infinite family of dissimilar perfect parallelepipeds with two nonparallel…

### No Perfect Cuboid

- Mathematics
- 2015

A rectangular parallelepiped is called a cuboid (standing box). It is called perfect if its edges, face diagonals and body diagonal all have integer length. Euler gave an example where only the body…

### Symmetry-Based Approach to the Problem of a Perfect Cuboid

- MathematicsJournal of Mathematical Sciences
- 2020

A perfect cuboid is a rectangular parallelepiped in which the lengths of all edges, the lengths of all face diagonals, and also the lengths of spatial diagonals are integers. No such cuboid has yet…

### Symmetry-Based Approach to the Problem of a Perfect Cuboid

- Mathematics
- 2020

A perfect cuboid is a rectangular parallelepiped in which the lengths of all edges, the lengths of all face diagonals, and also the lengths of spatial diagonals are integers. No such cuboid has yet…

### Classifying Diophantine parallelepipeds

- Mathematics
- 2018

By examining the 3 surface angles which exist at any of the 8 vertices of a Diophantine parallelepiped, and classifying them by the appearance of a right angle, it is discovered that 5 unique classes…

### COMPUTATION OF PERFECT "ALMOST-CUBOIDS"

- Physics
- 2013

We discuss generating parallelepipeds, with 4 rectangular faces, which have rational lengths and all face and space diagonals also rational.

### Some new parameterizations for the Diophantine bi-orthogonal monoclinic piped

- Mathematics
- 2017

The bi-orthogonal monoclinic Diophantine parallelepiped is introduced, then the s-parameters and their governing equation for the bi-orthogonal monoclinic Diophantine parallelepiped are discussed.…

### Four integer parametrizations for the monoclinic Diophantine piped

- Mathematics
- 2017

Four integer parametrizations for the bi-orthogonal monoclinic Diophantine parallelepiped are given.

### A note on invertible quadratic transformations of the real plane

- Mathematics
- 2015

A polynomial transformation of the real plane $\Bbb R^2$ is a mapping $\Bbb R^2\to\Bbb R^2$ given by two polynomials of two variables. Such a transformation is called quadratic if the degrees of its…

## References

SHOWING 1-6 OF 6 REFERENCES

### Unsolved Problems in Number Theory

- Mathematics
- 1981

This monograph contains discussions of hundreds of open questions, organized into 185 different topics. They represent aspects of number theory and are organized into six categories: prime numbers,…

### Families of Nearly Perfect Parallelepipeds, JP Jour

- Algebra Number Theory & Appl
- 2007

### Algebra Number Theory & Appl

- Algebra Number Theory & Appl
- 2006

### Matrix Generations of the Diophantine Solutions to Sums of 3 ≤ n ≤ 9 Squares that are Square

- JP Jour. Algebra, Number Theory & Appl
- 2007