Patterns of change in endoneurial capillary permeability and vascular space during Wallerian degeneration.

Abstract

In degenerating frog sciatic nerves an in situ perfusion technique was used to measure the permeability coefficient-surface area product (PA) of endoneurial capillaries to [14C]sucrose, and the endoneurial vascular space (V). Both PA and V started to increase after the 3rd day of degeneration. The increase in PA peaked around the 14th day of degeneration and then declined to reach near normal levels at 6 weeks post-transection. V increased until about the end of the 3rd week of degeneration and then declined to near normal levels at 6 weeks after transection. The delayed increase in capillary permeability may reflect an adaptive reorganization of endoneurial capillary structure and function in response to altered conditions of the endoneurial microenvironment, and it is suggested that this permeability increase is induced by breakdown products of axons or chemical signals from Schwann cells enveloping transected axons. Fluid extravasation from these leaking capillaries is probably responsible for the endoneurial oedema observed in Wallerian degeneration. The recovery of endoneurial capillary tone to near-normal levels at 6 weeks after transection leads to the intriguing conclusion that healthy nerve fibers are not essential for the maintenance of normal endoneurial capillary permeability.

Cite this paper

@article{Weerasuriya1988PatternsOC, title={Patterns of change in endoneurial capillary permeability and vascular space during Wallerian degeneration.}, author={Ananda Weerasuriya}, journal={Brain research}, year={1988}, volume={445 1}, pages={181-7} }